Advertisement

High energy behaviour of form factors

  • Taushif AhmedEmail author
  • Johannes M. Henn
  • Matthias Steinhauser
Open Access
Regular Article - Theoretical Physics

Abstract

We solve renormalization group equations that govern infrared divergences of massless and massive form factors. By comparing to recent results for planar massive three-loop and massless four-loop form factors in QCD, we give predictions for the high-energy limit of massive form factors at the four- and for the massless form factor at five-loop order. Furthermore, we discuss the relation which connects infrared divergences regularized dimensionally and via a small quark mass and extend results present in the literature to higher order.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

13130_2017_6252_MOESM1_ESM.m (72 kb)
ESM 1 (M 72 kb)

References

  1. [1]
    G.P. Korchemsky and A.V. Radyushkin, Infrared factorization, Wilson lines and the heavy quark limit, Phys. Lett. B 279 (1992) 359 [hep-ph/9203222] [INSPIRE].
  2. [2]
    A. Mitov and S. Moch, The singular behavior of massive QCD amplitudes, JHEP 05 (2007) 001 [hep-ph/0612149] [INSPIRE].
  3. [3]
    T. Becher and K. Melnikov, Two-loop QED corrections to Bhabha scattering, JHEP 06 (2007) 084 [arXiv:0704.3582] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Gluza, A. Mitov, S. Moch and T. Riemann, The QCD form factor of heavy quarks at NNLO, JHEP 07 (2009) 001 [arXiv:0905.1137] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The quark form-factor at higher orders, JHEP 08 (2005) 049 [hep-ph/0507039] [INSPIRE].
  6. [6]
    L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    J.M. Henn, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, A planar four-loop form factor and cusp anomalous dimension in QCD, JHEP 05 (2016) 066 [arXiv:1604.03126] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    J. Henn, A.V. Smirnov, V.A. Smirnov, M. Steinhauser and R.N. Lee, Four-loop photon quark form factor and cusp anomalous dimension in the large-N c limit of QCD, JHEP 03 (2017) 139 [arXiv:1612.04389] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Henn, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Massive three-loop form factor in the planar limit, JHEP 01 (2017) 074 [arXiv:1611.07535] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.C. Collins, Sudakov form-factors, Adv. Ser. Direct. High Energy Phys. 5 (1989) 573 [hep-ph/0312336] [INSPIRE].
  12. [12]
    L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D 42 (1990) 4222 [INSPIRE].ADSGoogle Scholar
  13. [13]
    O.V. Tarasov, A.A. Vladimirov and A.Yu. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett. B 93 (1980) 429 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].
  15. [15]
    M. Czakon, The four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710 (2005) 485 [hep-ph/0411261] [INSPIRE].
  16. [16]
    V. Ravindran, On Sudakov and soft resummations in QCD, Nucl. Phys. B 746 (2006) 58 [hep-ph/0512249] [INSPIRE].
  17. [17]
    V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys. B 752 (2006) 173 [hep-ph/0603041] [INSPIRE].
  18. [18]
    T. Ahmed, QCD Radiative Corrections to Higgs Physics, arXiv:1704.01031 [INSPIRE].
  19. [19]
    H. Contopanagos, E. Laenen and G.F. Sterman, Sudakov factorization and resummation, Nucl. Phys. B 484 (1997) 303 [hep-ph/9604313] [INSPIRE].
  20. [20]
    J.H. Kuhn, S. Moch, A.A. Penin and V.A. Smirnov, Next-to-next-to-leading logarithms in four fermion electroweak processes at high-energy, Nucl. Phys. B 616 (2001) 286 [Erratum ibid. B 648 (2003) 455] [hep-ph/0106298] [INSPIRE].
  21. [21]
    S. Moch, J.A.M. Vermaseren and A. Vogt, Nonsinglet structure functions at three loops: Fermionic contributions, Nucl. Phys. B 646 (2002) 181 [hep-ph/0209100] [INSPIRE].
  22. [22]
    S.A. Larin, T. van Ritbergen and J.A.M. Vermaseren, The Large quark mass expansion of Γ(Zhadrons) and Γ(τ ν τ + hadrons) in the order α s3, Nucl. Phys. B 438 (1995) 278 [hep-ph/9411260] [INSPIRE].
  23. [23]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(α s3) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].
  24. [24]
    Y. Schröder and M. Steinhauser, Four-loop decoupling relations for the strong coupling, JHEP 01 (2006) 051 [hep-ph/0512058] [INSPIRE].
  25. [25]
    K.G. Chetyrkin, J.H. Kuhn and C. Sturm, QCD decoupling at four loops, Nucl. Phys. B 744 (2006) 121 [hep-ph/0512060] [INSPIRE].
  26. [26]
    A.G. Grozin, P. Marquard, J.H. Piclum and M. Steinhauser, Three-Loop Chromomagnetic Interaction in HQET, Nucl. Phys. B 789 (2008) 277 [arXiv:0707.1388] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3 (1956) 65 [INSPIRE].MathSciNetzbMATHGoogle Scholar
  28. [28]
    A.H. Mueller, On the Asymptotic Behavior of the Sudakov Form-factor, Phys. Rev. D 20 (1979) 2037 [INSPIRE].ADSGoogle Scholar
  29. [29]
    J.C. Collins, Algorithm to Compute Corrections to the Sudakov Form-factor, Phys. Rev. D 22 (1980) 1478 [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Sen, Asymptotic Behavior of the Sudakov Form-Factor in QCD, Phys. Rev. D 24 (1981) 3281 [INSPIRE].ADSGoogle Scholar
  31. [31]
    T. Ahmed, P. Banerjee, P.K. Dhani, N. Rana, V. Ravindran and S. Seth, Konishi form factor at three loops in \( \mathcal{N}=4 \) supersymmetric Yang-Mills theory, Phys. Rev. D 95 (2017) 085019 [arXiv:1610.05317] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Vogt, Next-to-next-to-leading logarithmic threshold resummation for deep inelastic scattering and the Drell-Yan process, Phys. Lett. B 497 (2001) 228 [hep-ph/0010146] [INSPIRE].
  33. [33]
    C.F. Berger, Higher orders in A(α s)/[1 − x]+ of nonsinglet partonic splitting functions, Phys. Rev. D 66 (2002) 116002 [hep-ph/0209107] [INSPIRE].
  34. [34]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
  35. [35]
    S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form-factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].
  36. [36]
    T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 11 (2013) 024] [arXiv:0903.1126] [INSPIRE].
  37. [37]
    P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    J.A. Gracey, Anomalous dimension of nonsinglet Wilson operators at O(1/N f) in deep inelastic scattering, Phys. Lett. B 322 (1994) 141 [hep-ph/9401214] [INSPIRE].
  40. [40]
    M. Beneke and V.M. Braun, Power corrections and renormalons in Drell-Yan production, Nucl. Phys. B 454 (1995) 253 [hep-ph/9506452] [INSPIRE].
  41. [41]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, The quark and gluon form factors to three loops in QCD through to \( \mathcal{O}\left({\epsilon}^2\right) \), JHEP 11 (2010) 102 [arXiv:1010.4478] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institut für Theoretische TeilchenphysikKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.PRISMA Cluster of ExcellenceJohannes Gutenberg UniversityMainzGermany

Personalised recommendations