Simulations of Cold Electroweak Baryogenesis: hypercharge U(1) and the creation of helical magnetic fields

  • Zong-Gang MouEmail author
  • Paul M. Saffin
  • Anders Tranberg
Open Access
Regular Article - Theoretical Physics


We perform numerical simulations of Cold Electroweak Baryogenesis, including for the first time in the Bosonic sector the full electroweak gauge group SU(2) × U(1) and CP-violation. We find that the maximum generated baryon asymmetry is reduced by a factor of three relative to the SU(2)-only model of [1], but that the quench time dependence is very similar. In addition, we compute the magnitude of the helical magnetic fields, and find that it is proportional to the strength of CP-violation and dependent on quench time, but is not proportional to the magnitude of the baryon asymmetry as proposed in [2, 3]. Astrophysical signatures of primordial magnetic helicity can therefore not in general be used as evidence that electroweak baryogenesis has taken place.


Cosmology of Theories beyond the SM CP violation Lattice Quantum Field Theory Nonperturbative Effects 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Z.-G. Mou, P.M. Saffin and A. Tranberg, Simulations of Cold Electroweak Baryogenesis: Finding the optimal quench time, arXiv:1703.01781 [INSPIRE].
  2. [2]
    T. Vachaspati, Estimate of the primordial magnetic field helicity, Phys. Rev. Lett. 87 (2001) 251302 [astro-ph/0101261] [INSPIRE].
  3. [3]
    C.J. Copi, F. Ferrer, T. Vachaspati and A. Achucarro, Helical Magnetic Fields from Sphaleron Decay and Baryogenesis, Phys. Rev. Lett. 101 (2008) 171302 [arXiv:0801.3653] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    L.M. Krauss and M. Trodden, Baryogenesis below the electroweak scale, Phys. Rev. Lett. 83 (1999) 1502 [hep-ph/9902420] [INSPIRE].
  5. [5]
    J. García-Bellido, D.Yu. Grigoriev, A. Kusenko and M.E. Shaposhnikov, Nonequilibrium electroweak baryogenesis from preheating after inflation, Phys. Rev. D 60 (1999) 123504 [hep-ph/9902449] [INSPIRE].
  6. [6]
    E.J. Copeland, D. Lyth, A. Rajantie and M. Trodden, Hybrid inflation and baryogenesis at the TeV scale, Phys. Rev. D 64 (2001) 043506 [hep-ph/0103231] [INSPIRE].
  7. [7]
    A. Tranberg and J. Smit, Baryon asymmetry from electroweak tachyonic preheating, JHEP 11 (2003) 016 [hep-ph/0310342] [INSPIRE].
  8. [8]
    A. Tranberg, J. Smit and M. Hindmarsh, Simulations of cold electroweak baryogenesis: Finite time quenches, JHEP 01 (2007) 034 [hep-ph/0610096] [INSPIRE].
  9. [9]
    A. Tranberg and B. Wu, On using Cold Baryogenesis to constrain the Two-Higgs Doublet Model, JHEP 01 (2013) 046 [arXiv:1210.1779] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Tranberg and B. Wu, Cold Electroweak Baryogenesis in the Two Higgs-Doublet Model, JHEP 07 (2012) 087 [arXiv:1203.5012] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    Z.-G. Mou, P.M. Saffin and A. Tranberg, Cold Baryogenesis from first principles in the Two-Higgs Doublet model with Fermions, JHEP 06 (2015) 163 [arXiv:1505.02692] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Diaz-Gil, J. Garcıa-Bellido, M. García Pérez and A. González-Arroyo, Magnetic field production during preheating at the electroweak scale, Phys. Rev. Lett. 100 (2008) 241301 [arXiv:0712.4263] [INSPIRE].
  13. [13]
    A. Diaz-Gil, J. García-Bellido, M. García Pérez and A. González-Arroyo, Primordial magnetic fields from preheating at the electroweak scale, JHEP 07 (2008) 043 [arXiv:0805.4159] [INSPIRE].
  14. [14]
    J. Garcıa-Bellido, M. García-Pérez and A. González-Arroyo, Chern-Simons production during preheating in hybrid inflation models, Phys. Rev. D 69 (2004) 023504 [hep-ph/0304285] [INSPIRE].
  15. [15]
    D. Grasso and H.R. Rubinstein, Magnetic fields in the early universe, Phys. Rept. 348 (2001) 163 [astro-ph/0009061] [INSPIRE].
  16. [16]
    A. Tranberg and J. Smit, Simulations of cold electroweak baryogenesis: Dependence on Higgs mass and strength of CP-violation, JHEP 08 (2006) 012 [hep-ph/0604263] [INSPIRE].
  17. [17]
    T. Brauner, O. Taanila, A. Tranberg and A. Vuorinen, Temperature Dependence of Standard Model CP-violation, Phys. Rev. Lett. 108 (2012) 041601 [arXiv:1110.6818] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. ’t Hooft, Magnetic Monopoles in Unified Gauge Theories, Nucl. Phys. B 79 (1974) 276 [INSPIRE].
  19. [19]
    M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron Rate in the Minimal Standard Model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Rajantie, P.M. Saffin and E.J. Copeland, Electroweak preheating on a lattice, Phys. Rev. D 63 (2001) 123512 [hep-ph/0012097] [INSPIRE].
  21. [21]
    J. Garcıa-Bellido, M. García Pérez and A. González-Arroyo, Symmetry breaking and false vacuum decay after hybrid inflation, Phys. Rev. D 67 (2003) 103501 [hep-ph/0208228] [INSPIRE].
  22. [22]
    J. Smit and A. Tranberg, Chern-Simons number asymmetry from CP-violation at electroweak tachyonic preheating, JHEP 12 (2002) 020 [hep-ph/0211243] [INSPIRE].
  23. [23]
    J.-I. Skullerud, J. Smit and A. Tranberg, W and Higgs particle distributions during electroweak tachyonic preheating, JHEP 08 (2003) 045 [hep-ph/0307094] [INSPIRE].
  24. [24]
    K. Enqvist, P. Stephens, O. Taanila and A. Tranberg, Fast Electroweak Symmetry Breaking and Cold Electroweak Baryogenesis, JCAP 09 (2010) 019 [arXiv:1005.0752] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    B.J.W. van Tent, J. Smit and A. Tranberg, Electroweak scale inflation, inflaton Higgs mixing and the scalar spectral index, JCAP 07 (2004) 003 [hep-ph/0404128] [INSPIRE].
  26. [26]
    T. Konstandin and G. Servant, Natural Cold Baryogenesis from Strongly Interacting Electroweak Symmetry Breaking, JCAP 07 (2011) 024 [arXiv:1104.4793] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Z.G. Mou, P.M. Saffin and A. Tranberg, Simulations of Cold Electroweak Baryogenesis: quench due to an extra singlet, in progress.Google Scholar
  28. [28]
    S.Yu. Khlebnikov and M.E. Shaposhnikov, The Statistical Theory of Anomalous Fermion Number Nonconservation, Nucl. Phys. B 308 (1988) 885 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    Y. Burnier, M. Laine and M. Shaposhnikov, Baryon and lepton number violation rates across the electroweak crossover, JCAP 02 (2006) 007 [hep-ph/0511246] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Zong-Gang Mou
    • 2
    Email author
  • Paul M. Saffin
    • 1
  • Anders Tranberg
    • 2
  1. 1.School of Physics and AstronomyUniversity of NottinghamNottinghamU.K.
  2. 2.Faculty of Science and TechnologyUniversity of StavangerStavangerNorway

Personalised recommendations