Wilson lines and UV sensitivity in magnetic compactifications

  • D.M. Ghilencea
  • Hyun Min Lee
Open Access
Regular Article - Theoretical Physics


We investigate the ultraviolet (UV) behaviour of 6D N=1 supersymmetric effective (Abelian) gauge theories compactified on a two-torus (T 2) with magnetic flux. To this purpose we compute offshell the one-loop correction to the Wilson line state self-energy. The offshell calculation is actually necessary to capture the usual effective field theory expansion in powers of (∂/Λ). Particular care is paid to the regularization of the (divergent) momentum integrals, which is relevant for identifying the corresponding counterterm(s). We find a counterterm which is a new higher dimensional effective operator of dimension d=6, that is enhanced for a larger compactification area (where the effective theory applies) and is consistent with the symmetries of the theory. Its consequences are briefly discussed and comparison is made with orbifold compactifications without flux.


Effective Field Theories Flux compactifications Compactification and String Models Supersymmetric Gauge Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Berkooz, M.R. Douglas and R.G. Leigh, Branes intersecting at angles, Nucl. Phys. B 480 (1996) 265 [hep-th/9606139] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    C. Angelantonj, I. Antoniadis, E. Dudas and A. Sagnotti, Type I strings on magnetized orbifolds and brane transmutation, Phys. Lett. B 489 (2000) 223 [hep-th/0007090] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Blumenhagen, L. Görlich, B. Körs and D. Lüst, Noncommutative compactifications of type-I strings on tori with magnetic background flux, JHEP 10 (2000) 006 [hep-th/0007024] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    P. Anastasopoulos, I. Antoniadis, K. Benakli, M.D. Goodsell and A. Vichi, One-loop adjoint masses for non-supersymmetric intersecting branes, JHEP 08 (2011) 120 [arXiv:1105.0591] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A.M. Uranga, Intersecting brane worlds, JHEP 02 (2001) 047 [hep-ph/0011132] [INSPIRE].
  6. [6]
    D. Cremades, L.E. Ibáñez and F. Marchesano, Computing Yukawa couplings from magnetized extra dimensions, JHEP 05 (2004) 079 [hep-th/0404229] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept. 371 (2002) 1 [hep-th/0204089] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    C. Bachas, A way to break supersymmetry, hep-th/9503030 [INSPIRE].
  10. [10]
    W. Buchmüller, M. Dierigl, E. Dudas and J. Schweizer, Effective field theory for magnetic compactifications, JHEP 04 (2017) 052 [arXiv:1611.03798] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    M. Ishida, K. Nishiwaki and Y. Tatsuta, Brane-localized masses in magnetic compactifications, arXiv:1702.08226 [INSPIRE].
  12. [12]
    Y. Hamada and T. Kobayashi, Massive modes in magnetized brane models, Prog. Theor. Phys. 128 (2012) 903 [arXiv:1207.6867] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M.H. Al-Hashimi and U.J. Wiese, Discrete accidental symmetry for a particle in a constant magnetic field on a torus, Annals Phys. 324 (2009) 343 [arXiv:0807.0630] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    W. Buchmüller, M. Dierigl, F. Ruehle and J. Schweizer, De Sitter vacua and supersymmetry breaking in six-dimensional flux compactifications, Phys. Rev. D 94 (2016) 025025 [arXiv:1606.05653] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    L.D. Landau and E.M. Lifshitz, Quantum mechanics (Non-relativistic theory), third Edition, Betterworth-Heiniemann, U.S.A. (1977).Google Scholar
  16. [16]
    W. Buchmüller and J. Schweizer, Flavor mixings in flux compactifications, Phys. Rev. D 95 (2017) 075024 [arXiv:1701.06935] [INSPIRE].ADSGoogle Scholar
  17. [17]
    T.-H. Abe, Y. Fujimoto, T. Kobayashi, T. Miura, K. Nishiwaki and M. Sakamoto, Z N twisted orbifold models with magnetic flux, JHEP 01 (2014) 065 [arXiv:1309.4925] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T.-h. Abe, Y. Fujimoto, T. Kobayashi, T. Miura, K. Nishiwaki and M. Sakamoto, Operator analysis of physical states on magnetized T 2 /Z N orbifolds, Nucl. Phys. B 890 (2014) 442 [arXiv:1409.5421] [INSPIRE].ADSzbMATHGoogle Scholar
  19. [19]
    T.-h. Abe, Y. Fujimoto, T. Kobayashi, T. Miura, K. Nishiwaki, M. Sakamoto et al., Classification of three-generation models on magnetized orbifolds, Nucl. Phys. B 894 (2015) 374 [arXiv:1501.02787] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    Y. Fujimoto, T. Kobayashi, K. Nishiwaki, M. Sakamoto and Y. Tatsuta, Comprehensive analysis of Yukawa hierarchies on T 2 /Z N with magnetic fluxes, Phys. Rev. D 94 (2016) 035031 [arXiv:1605.00140] [INSPIRE].ADSGoogle Scholar
  21. [21]
    T. Kobayashi, K. Nishiwaki and Y. Tatsuta, CP-violating phase on magnetized toroidal orbifolds, JHEP 04 (2017) 080 [arXiv:1609.08608] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    W. Buchmüller, M. Dierigl, F. Ruehle and J. Schweizer, Split symmetries, Phys. Lett. B 750 (2015) 615 [arXiv:1507.06819] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    H. Abe, T. Kobayashi, K. Sumita and Y. Tatsuta, Supersymmetric models on magnetized orbifolds with flux-induced Fayet-Iliopoulos terms, Phys. Rev. D 95 (2017) 015005 [arXiv:1610.07730] [INSPIRE].ADSGoogle Scholar
  24. [24]
    Y. Fujimoto, T. Kobayashi, T. Miura, K. Nishiwaki and M. Sakamoto, Shifted orbifold models with magnetic flux, Phys. Rev. D 87 (2013) 086001 [arXiv:1302.5768] [INSPIRE].ADSGoogle Scholar
  25. [25]
    D.M. Ghilencea, Higher derivative operators as loop counterterms in one-dimensional field theory orbifolds, JHEP 03 (2005) 009 [hep-ph/0409214] [INSPIRE].
  26. [26]
    D.M. Ghilencea and H.M. Lee, Higher derivative operators from transmission of supersymmetry breaking on S 1 /Z 2, JHEP 09 (2005) 024 [hep-ph/0505187] [INSPIRE].
  27. [27]
    D.M. Ghilencea and H.M. Lee, Higher derivative operators from Scherk-Schwarz supersymmetry breaking on T 2 /Z 2, JHEP 12 (2005) 039 [hep-ph/0508221] [INSPIRE].
  28. [28]
    S. Groot Nibbelink and M. Hillenbach, Quantum corrections to non-Abelian SUSY theories on orbifolds, Nucl. Phys. B 748 (2006) 60 [hep-th/0602155] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S. Groot Nibbelink and M. Hillenbach, Renormalization of supersymmetric gauge theories on orbifolds: brane gauge couplings and higher derivative operators, Phys. Lett. B 616 (2005) 125 [hep-th/0503153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    D.M. Ghilencea, H.M. Lee and K. Schmidt-Hoberg, Higher derivatives and brane-localised kinetic terms in gauge theories on orbifolds, JHEP 08 (2006) 009 [hep-ph/0604215] [INSPIRE].
  31. [31]
    D.M. Ghilencea, Compact dimensions and their radiative mixing, Phys. Rev. D 70 (2004) 045018 [hep-ph/0311264] [INSPIRE].
  32. [32]
    H. Georgi, Effective field theory, Ann. Rev. Nucl. Part. Sci. 43 (1993) 209 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    N. Marcus, A. Sagnotti and W. Siegel, Ten-dimensional supersymmetric Yang-Mills theory in terms of four-dimensional superfields, Nucl. Phys. B 224 (1983) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    N. Arkani-Hamed, T. Gregoire and J.G. Wacker, Higher dimensional supersymmetry in 4−D superspace, JHEP 03 (2002) 055 [hep-th/0101233] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    E. Elizalde, Ten physical applications of spectral zeta functions, second edition, Berlin, Springer, Germany (2012).Google Scholar
  36. [36]
    I. Gradshteyn and I. Ryzhik, Table of integrals, series and products, 7th edition, Academic Press, U.S.A. (2007).Google Scholar
  37. [37]
    I. Antoniadis, E. Dudas and D.M. Ghilencea, Living with ghosts and their radiative corrections, Nucl. Phys. B 767 (2007) 29 [hep-th/0608094] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    I. Antoniadis, E. Dudas and D.M. Ghilencea, Supersymmetric Models with Higher Dimensional Operators, JHEP 03 (2008) 045 [arXiv:0708.0383] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    E. Dudas and D.M. Ghilencea, Effective operators in SUSY, superfield constraints and searches for a UV completion, JHEP 06 (2015) 124 [arXiv:1503.08319] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    D.M. Ghilencea, D. Hoover, C.P. Burgess and F. Quevedo, Casimir energies for 6D supergravities compactified on T 2 /Z(N) with Wilson lines, JHEP 09 (2005) 050 [hep-th/0506164] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    E. Onofri, Landau levels on a torus, Int. J. Theor. Phys. 40 (2001) 537 [quant-ph/0007055] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Theoretical Physics DepartmentNational Institute of Physics and Nuclear EngineeringBucharestRomania
  2. 2.Department of PhysicsChung-Ang UniversitySeoulKorea

Personalised recommendations