Resonant diphoton phenomenology simplified

  • Giuliano PanicoEmail author
  • Luca Vecchi
  • Andrea Wulzer
Open Access
Regular Article - Theoretical Physics


A framework is proposed to describe resonant diphoton phenomenology at hadron colliders in full generality. It can be employed for a comprehensive model-independent interpretation of the experimental data. Within the general framework, few benchmark scenarios are defined as representative of the various phenomenological options and/or of motivated new physics scenarios. Their usage is illustrated by performing a characterization of the 750 GeV excess, based on a recast of available experimental results.

We also perform an assessment of which properties of the resonance could be inferred, after discovery, by a careful experimental study of the diphoton distributions. These include the spin J of the new particle and its dominant production mode. Partial information on its CP-parity can also be obtained, but only for J ≥ 2. The complete determination of the resonance CP properties requires studying the pattern of the initial state radiation that accompanies the resonant diphoton production.


Beyond Standard Model Effective field theories Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Dawson, The effective W approximation, Nucl. Phys. B 249 (1985) 42 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    L.A. Harland-Lang, V.A. Khoze and M.G. Ryskin, The production of a diphoton resonance via photon-photon fusion, JHEP 03 (2016) 182 [arXiv:1601.07187] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A.D. Martin and M.G. Ryskin, The photon PDF of the proton, Eur. Phys. J. C 74 (2014) 3040 [arXiv:1406.2118] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  5. [5]
    T.L. Trueman, \( \phi \phi \) decay as a parity and signature test, Phys. Rev. D 18 (1978) 3423 [INSPIRE].
  6. [6]
    J.R. Dell’Aquila and C.A. Nelson, P or CP determination by sequential decays: V1 V2 Modes With Decays Into ℓepton (A) ℓ(B) and/or \( \overline{q} \)(A)q(B), Phys. Rev. D 33 (1986) 80 [INSPIRE].ADSGoogle Scholar
  7. [7]
    S.Y. Choi, D.J. Miller, M.M. Muhlleitner and P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].
  8. [8]
    Y. Gao, A.V. Gritsan, Z. Guo, K. Melnikov, M. Schulze and N.V. Tran, Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. Bolognesi, Y. Gao, A.V. Gritsan, K. Melnikov, M. Schulze, N.V. Tran et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].ADSGoogle Scholar
  10. [10]
    CMS collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV, Phys. Rev. D 92 (2015) 012004 [arXiv:1411.3441] [INSPIRE].
  11. [11]
    D.J. Miller, S.Y. Choi, B. Eberle, M.M. Muhlleitner and P.M. Zerwas, Measuring the spin of the Higgs boson, Phys. Lett. B 505 (2001) 149 [hep-ph/0102023] [INSPIRE].
  12. [12]
    C.P. Buszello, I. Fleck, P. Marquard and J.J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in HZZl(1)+ l(1) l(2)+ l(2) at the LHC, Eur. Phys. J. C 32 (2004)209 [hep-ph/0212396] [INSPIRE].
  13. [13]
    S.Y. Choi, M.M. Muhlleitner and P.M. Zerwas, Theoretical basis of Higgs-spin analysis in Hγγ and Zγ decays, Phys. Lett. B 718 (2013) 1031 [arXiv:1209.5268] [INSPIRE].
  14. [14]
  15. [15]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L.A. Harland-Lang, V.A. Khoze and M.G. Ryskin, The photon PDF in events with rapidity gaps, Eur. Phys. J. C 76 (2016) 255 [arXiv:1601.03772] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    ATLAS collaboration, Search for resonances decaying to photon pairs in 3.2 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-081 (2015).
  18. [18]
    CMS collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-004 (2015).
  19. [19]
    L. Aparicio, A. Azatov, E. Hardy and A. Romanino, Diphotons from diaxions, JHEP 05 (2016) 077 [arXiv:1602.00949] [INSPIRE].
  20. [20]
    P. Agrawal, J. Fan, B. Heidenreich, M. Reece and M. Strassler, Experimental considerations motivated by the diphoton excess at the LHC, JHEP 06 (2016) 082 [arXiv:1512.05775] [INSPIRE].CrossRefGoogle Scholar
  21. [21]
    J. Chang, K. Cheung and C.-T. Lu, Interpreting the 750 GeV diphoton resonance using photon jets in hidden-valley-like models, Phys. Rev. D 93 (2016) 075013 [arXiv:1512.06671] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Chala, M. Duerr, F. Kahlhoefer and K. Schmidt-Hoberg, Tricking Landau-Yang: how to obtain the diphoton excess from a vector resonance, Phys. Lett. B 755 (2016) 145 [arXiv:1512.06833] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    X.-J. Bi et al., A promising interpretation of diphoton resonance at 750 GeV, arXiv:1512.08497 [INSPIRE].
  24. [24]
    ATLAS collaboration, Search for high-mass diphoton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 032004 [arXiv:1504.05511] [INSPIRE].
  25. [25]
    CMS collaboration, Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 750 (2015) 494 [arXiv:1506.02301] [INSPIRE].
  26. [26]
    S. Fichet, G. von Gersdorff and C. Royon, Scattering light by light at 750 GeV at the LHC, Phys. Rev. D 93 (2016) 075031 [arXiv:1512.05751] [INSPIRE].ADSGoogle Scholar
  27. [27]
    C. Csáki, J. Hubisz and J. Terning, Minimal model of a diphoton resonance: production without gluon couplings, Phys. Rev. D 93 (2016) 035002 [arXiv:1512.05776] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C. Csáki, J. Hubisz, S. Lombardo and J. Terning, Gluon versus photon production of a 750 GeV diphoton resonance, Phys. Rev. D 93 (2016) 095020 [arXiv:1601.00638] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S. Abel and V.V. Khoze, Photo-production of a 750 GeV di-photon resonance mediated by Kaluza-Klein leptons in the loop, JHEP 05 (2016) 063 [arXiv:1601.07167] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    C. Han, H.M. Lee, M. Park and V. Sanz, The diphoton resonance as a gravity mediator of dark matter, Phys. Lett. B 755 (2016) 371 [arXiv:1512.06376] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M.R. Buckley, Wide or narrow? The phenomenology of 750 GeV diphotons, Eur. Phys. J. C 76 (2016) 345 [arXiv:1601.04751] [INSPIRE].
  32. [32]
    A. Martini, K. Mawatari and D. Sengupta, Diphoton excess in phenomenological spin-2 resonance scenarios, Phys. Rev. D 93 (2016) 075011 [arXiv:1601.05729] [INSPIRE].ADSGoogle Scholar
  33. [33]
    C.-Q. Geng and D. Huang, Note on spin-2 particle interpretation of the 750 GeV diphoton excess, Phys. Rev. D 93 (2016) 115032 [arXiv:1601.07385] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S.B. Giddings and H. Zhang, Kaluza-Klein graviton phenomenology for warped compactifications and the 750 GeV diphoton excess, Phys. Rev. D 93 (2016) 115002 [arXiv:1602.02793] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J. Bernon, A. Goudelis, S. Kraml, K. Mawatari and D. Sengupta, Characterising the 750 GeV diphoton excess, JHEP 05 (2016) 128 [arXiv:1603.03421] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A.B. Kaidalov, V.A. Khoze, A.D. Martin and M.G. Ryskin, Central exclusive diffractive production as a spin-parity analyser: from hadrons to Higgs, Eur. Phys. J. C 31 (2003) 387 [hep-ph/0307064] [INSPIRE].
  37. [37]
    P. Borel, R. Franceschini, R. Rattazzi and A. Wulzer, Probing the scattering of equivalent electroweak bosons, JHEP 06 (2012) 122 [arXiv:1202.1904] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Weinberg, The quantum theory of fields. Volume 1: foundations, Cambridge University Press, Camrbidge U.K. (2005).Google Scholar
  39. [39]
    K. Hagiwara, J. Kanzaki, Q. Li and K. Mawatari, HELAS and MadGraph/MadEvent with spin-2 particles, Eur. Phys. J. C 56 (2008) 435 [arXiv:0805.2554] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, Reading, U.S.A. (1995).Google Scholar
  41. [41]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
  42. [42]
    M. Maltoni and T. Schwetz, Testing the statistical compatibility of independent data sets, Phys. Rev. D 68 (2003) 033020 [hep-ph/0304176] [INSPIRE].
  43. [43]
    R. Franceschini et al., What is the γγ resonance at 750 GeV?, JHEP 03 (2016) 144 [arXiv:1512.04933] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R.S. Gupta, S. Jäger, Y. Kats, G. Perez and E. Stamou, Interpreting a 750 GeV diphoton resonance, arXiv:1512.05332 [INSPIRE].
  45. [45]
    J. Ellis, S.A.R. Ellis, J. Quevillon, V. Sanz and T. You, On the interpretation of a possible ∼750 GeV particle decaying into γγ, JHEP 03 (2016) 176 [arXiv:1512.05327] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Falkowski, O. Slone and T. Volansky, Phenomenology of a 750 GeV singlet, JHEP 02 (2016) 152 [arXiv:1512.05777] [INSPIRE].
  47. [47]
    J.S. Kim, K. Rolbiecki and R. Ruiz de Austri, Model-independent combination of diphoton constraints at 750 GeV, Eur. Phys. J. C 76 (2016) 251 [arXiv:1512.06797] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J.H. Davis, M. Fairbairn, J. Heal and P. Tunney, The significance of the 750 GeV fluctuation in the ATLAS run 2 diphoton data, arXiv:1601.03153 [INSPIRE].
  49. [49]
    B.J. Kavanagh, Re-examining the significance of the 750 GeV diphoton excess at ATLAS, arXiv:1601.07330 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.IFAE, Universitat Autònoma de BarcelonaBellaterraSpain
  2. 2.SISSATriesteItaly
  3. 3.Dipartimento di Fisica e AstronomiaUniversità di Padova and INFN — Sezione di PadovaPadovaItaly

Personalised recommendations