Towards Kaluza-Klein Dark Matter on nilmanifolds

  • David AndriotEmail author
  • Giacomo Cacciapaglia
  • Aldo Deandrea
  • Nicolas Deutschmann
  • Dimitrios Tsimpis
Open Access
Regular Article - Theoretical Physics


We present a first study of the field spectrum on a class of negatively-curved compact spaces: nilmanifolds or twisted tori. This is a case where analytical results can be obtained, allowing to check numerical methods. We focus on the Kaluza-Klein expansion of a scalar field. The results are then applied to a toy model where a natural Dark Matter candidate arises as a stable massive state of the bulk scalar.


Beyond Standard Model Compactification and String Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    I. Antoniadis, A Possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The Hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].
  3. [3]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].
  4. [4]
    N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [INSPIRE].
  5. [5]
    N. Kaloper, J. March-Russell, G.D. Starkman and M. Trodden, Compact hyperbolic extra dimensions: Branes, Kaluza-Klein modes and cosmology, Phys. Rev. Lett. 85 (2000) 928 [hep-ph/0002001] [INSPIRE].
  6. [6]
    A. Kehagias and J.G. Russo, Hyperbolic spaces in string and M-theory, JHEP 07 (2000) 027 [hep-th/0003281] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    D. Orlando, String Theory: Exact solutions, marginal deformations and hyperbolic spaces, Fortsch. Phys. 55 (2007) 161 [hep-th/0610284] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    E. Silverstein, Simple de Sitter Solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    M.R. Douglas and R. Kallosh, Compactification on negatively curved manifolds, JHEP 06 (2010) 004 [arXiv:1001.4008] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    R. Camporesi and A. Higuchi, On the Eigen functions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys. 20 (1996) 1 [gr-qc/9505009] [INSPIRE].
  11. [11]
    N. Maru, T. Nomura, J. Sato and M. Yamanaka, The Universal Extra Dimensional Model with S 2 /Z 2 extra-space, Nucl. Phys. B 830 (2010) 414 [arXiv:0904.1909] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    H. Dohi and K.-y. Oda, Universal Extra Dimensions on Real Projective Plane, Phys. Lett. B 692 (2010) 114 [arXiv:1004.3722] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    G. Cacciapaglia, A. Deandrea and N. Deutschmann, Dark matter and localised fermions from spherical orbifolds?, JHEP 04 (2016) 083 [arXiv:1601.00081] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Orlando and S.C. Park, Compact hyperbolic extra dimensions: a M-theory solution and its implications for the LHC, JHEP 08 (2010) 006 [arXiv:1006.1901] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  16. [16]
    G.D. Starkman, D. Stojkovic and M. Trodden, Homogeneity, flatness and ‘large’ extra dimensions, Phys. Rev. Lett. 87 (2001) 231303 [hep-th/0106143] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    C.-M. Chen, P.-M. Ho, I.P. Neupane, N. Ohta and J.E. Wang, Hyperbolic space cosmologies, JHEP 10 (2003) 058 [hep-th/0306291] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    I.P. Neupane, Accelerating cosmologies from exponential potentials, Class. Quant. Grav. 21 (2004) 4383 [hep-th/0311071] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    G. Mostow, Quasi-conformal mapping in n-space and the rigidity of the hyperbolic space forms, Publ. Math. 34 (1968) 53.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Nasri, P.J. Silva, G.D. Starkman and M. Trodden, Radion stabilization in compact hyperbolic extra dimensions, Phys. Rev. D 66 (2002) 045029 [hep-th/0201063] [INSPIRE].ADSGoogle Scholar
  21. [21]
    B. Greene, D. Kabat, J. Levin and D. Thurston, A bulk inflaton from large volume extra dimensions, Phys. Lett. B 694 (2011) 485 [arXiv:1001.1423] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    Y. Kim and S.C. Park, Hyperbolic Inflation, Phys. Rev. D 83 (2011) 066009 [arXiv:1010.6021] [INSPIRE].ADSGoogle Scholar
  23. [23]
    N.J. Cornish and N.G. Turok, Ringing the eigenmodes from compact manifolds, Class. Quant. Grav. 15 (1998) 2699 [gr-qc/9802066] [INSPIRE].
  24. [24]
    N.J. Cornish and D.N. Spergel, On the eigenmodes of compact hyperbolic 3-manifolds, arXiv:math/9906017.
  25. [25]
    K.T. Inoue, Computation of eigenmodes on a compact hyperbolic space, Class. Quant. Grav. 16 (1999) 3071 [astro-ph/9810034] [INSPIRE].
  26. [26]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, A Scan for new N = 1 vacua on twisted tori, JHEP 05 (2007) 031 [hep-th/0609124] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    D. Andriot, E. Goi, R. Minasian and M. Petrini, Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory, JHEP 05 (2011) 028 [arXiv:1003.3774] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    M.-P. Gong, Classification of Nilpotent Lie Algebras of Dimension 7, Ph.D. Thesis, University of Waterloo, Ontario Canada (1998).Google Scholar
  29. [29]
    C. Bock, On Low-Dimensional Solvmanifolds, arXiv:0903.2926.
  30. [30]
    J. Brezin, Harmonic Analysis on Nilmanifolds, Trans. Am. Math. Soc. 150 (1970) 611.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    S. Thangavelu, Harmonic Analysis on Heisenberg Nilmanifolds, Rev. Un. Mat. Argentina 50 (2009) 2.MathSciNetzbMATHGoogle Scholar
  32. [32]
    C.S. Gordon and E.N. Wilson, The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J. 33 (1986) 253.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    L. Schubert, Spectral properties of the Laplacian on p-forms on the Heisenberg group, Ph.D. Thesis, University of Adelaide, Adelaide Australia (1997).Google Scholar
  34. [34]
    S. Kachru, M.B. Schulz, P.K. Tripathy and S.P. Trivedi, New supersymmetric string compactifications, JHEP 03 (2003) 061 [hep-th/0211182] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    D. Andriot, New supersymmetric vacua on solvmanifolds, JHEP 02 (2016) 112 [arXiv:1507.00014] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    E. Silverstein and A. Westphal, Monodromy in the CMB: Gravity Waves and String Inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].ADSGoogle Scholar
  37. [37]
    G. Gur-Ari, Brane Inflation and Moduli Stabilization on Twisted Tori, JHEP 01 (2014) 179 [arXiv:1310.6787] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D. Andriot, A no-go theorem for monodromy inflation, JCAP 03 (2016) 025 [arXiv:1510.02005] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, (Non-)commutative closed string on T-dual toroidal backgrounds, JHEP 06 (2013) 021 [arXiv:1211.6437] [INSPIRE].
  40. [40]
    M. Graña, J. Louis and D. Waldram, Hitchin functionals in N = 2 supergravity, JHEP 01 (2006) 008 [hep-th/0505264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    C. Caviezel, P. Koerber, S. Körs, D. Lüst, D. Tsimpis and M. Zagermann, The Effective theory of type IIA AdS 4 compactifications on nilmanifolds and cosets, Class. Quant. Grav. 26 (2009) 025014 [arXiv:0806.3458] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].
  43. [43]
    G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, A Dark Matter candidate from Lorentz Invariance in 6D, JHEP 03 (2010) 083 [arXiv:0907.4993] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Rezaei-Aghdam, M. Sephid and S. Fallahpour, Automorphism group and ad-invariant metric on all six dimensional solvable real Lie algebras, arXiv:1009.0816.
  45. [45]
    B. Gough, GNU Scientific Library Reference Manual, third edition, Network Theory Ltd (2009).Google Scholar
  46. [46]
    A. Arbey, G. Cacciapaglia, A. Deandrea and B. Kubik, Dark Matter in a twisted bottle, JHEP 01 (2013) 147 [arXiv:1210.0384] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    K. Agashe, A. Falkowski, I. Low and G. Servant, KK Parity in Warped Extra Dimension, JHEP 04 (2008) 027 [arXiv:0712.2455] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    A. Ahmed, B. Grzadkowski, J.F. Gunion and Y. Jiang, Higgs dark matter from a warped extra dimension — the truncated-inert-doublet model, JHEP 10 (2015) 033 [arXiv:1504.03706] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A.I. Malcev, On a class of homogeneous spaces, Trans. Am. Math. Soc. 39 (1951) 1.MathSciNetzbMATHGoogle Scholar
  50. [50]
    A.D. Poularikas, Transforms and Applications Handbook, third edition, CRC Press (2010).Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • David Andriot
    • 1
    • 2
    Email author
  • Giacomo Cacciapaglia
    • 3
  • Aldo Deandrea
    • 3
    • 4
  • Nicolas Deutschmann
    • 3
    • 5
  • Dimitrios Tsimpis
    • 3
  1. 1.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutPotsdam-GolmGermany
  2. 2.Institut für MathematikHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPNLVilleurbanneFrance
  4. 4.Institut Universitaire de FranceParisFrance
  5. 5.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations