Advertisement

Holographic Chern-Simons defects

  • Mitsutoshi Fujita
  • Charles M. Melby-Thompson
  • René MeyerEmail author
  • Shigeki Sugimoto
Open Access
Regular Article - Theoretical Physics

Abstract

We study SU(N ) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.

Keywords

AdS-CFT Correspondence Chern-Simons Theories Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys. 140 (1982) 372 [Annals Phys. 281 (2000) 409] [Erratum ibid. 185 (1988) 406] [INSPIRE].
  2. [2]
    E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S.C. Zhang, T.H. Hansson and S. Kivelson, An effective field theory model for the fractional quantum hall effect, Phys. Rev. Lett. 62 (1988) 82 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D.H. Lee and S.C. Zhang, Collective excitations in the Ginzburg-Landau theory of the fractional quantum Hall effect, Phys. Rev. Lett. 66 (1991) 1220.ADSCrossRefGoogle Scholar
  5. [5]
    S.-C. Zhang, The Chern-Simons-Landau-Ginzburg theory of the fractional quantum Hall effect, Int. J. Mod. Phys. B 6 (1992) 25 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    S.G. Naculich, H.A. Riggs and H.J. Schnitzer, Group Level Duality in WZW Models and Chern-Simons Theory, Phys. Lett. B 246 (1990) 417 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Camperi, F. Levstein and G. Zemba, The Large-N Limit of Chern-Simons Gauge Theory, Phys. Lett. B 247 (1990) 549 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    E.J. Mlawer, S.G. Naculich, H.A. Riggs and H.J. Schnitzer, Group level duality of WZW fusion coefficients and Chern-Simons link observables, Nucl. Phys. B 352 (1991) 863 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    S.G. Naculich and H.J. Schnitzer, Level-rank duality of the U(N) WZW model, Chern-Simons theory and 2 − D qYM theory, JHEP 06 (2007) 023 [hep-th/0703089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    V. Niarchos, Seiberg Duality in Chern-Simons Theories with Fundamental and Adjoint Matter, JHEP 11 (2008) 001 [arXiv:0808.2771] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    F. Benini, C. Closset and S. Cremonesi, Comments on 3d Seiberg-like dualities, JHEP 10 (2011) 075 [arXiv:1108.5373] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP 07 (2013) 149 [arXiv:1305.3924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    O. Aharony and D. Fleischer, IR Dualities in General 3d Supersymmetric SU(N ) QCD Theories, JHEP 02 (2015) 162 [arXiv:1411.5475] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large-N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    G. Gur-Ari and R. Yacoby, Correlators of Large-N Fermionic Chern-Simons Vector Models, JHEP 02 (2013) 150 [arXiv:1211.1866] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby, The Thermal Free Energy in Large-N Chern-Simons-Matter Theories, JHEP 03 (2013) 121 [arXiv:1211.4843] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Jain, S. Minwalla, T. Sharma, T. Takimi, S.R. Wadia and S. Yokoyama, Phases of large-N vector Chern-Simons theories on S 2 × S 1, JHEP 09 (2013) 009 [arXiv:1301.6169] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Jain, S. Minwalla and S. Yokoyama, Chern Simons duality with a fundamental boson and fermion, JHEP 11 (2013) 037 [arXiv:1305.7235] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP 02 (2016) 093 [arXiv:1512.00161] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C.G. Callan Jr. and J.A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys. B 250 (1985) 427 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Armoni and V. Niarchos, Defects in Chern-Simons theory, gauged WZW models on the brane and level-rank duality, JHEP 07 (2015) 062 [arXiv:1505.02916] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    G. ’t Hooft, A Two-Dimensional Model for Mesons, Nucl. Phys. B 75 (1974) 461 [INSPIRE].
  26. [26]
    M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional Quantum Hall Effect via Holography: Chern-Simons, Edge States and Hierarchy, JHEP 06 (2009) 066 [arXiv:0901.0924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    M. Levin and X.-G. Wen, Detecting Topological Order in a Ground State Wave Function, Phys. Rev. Lett. 96 (2006) 110405 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Dong, E. Fradkin, R.G. Leigh and S. Nowling, Topological Entanglement Entropy in Chern-Simons Theories and Quantum Hall Fluids, JHEP 05 (2008) 016 [arXiv:0802.3231] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    E.H. Fradkin, C. Nayak, A. Tsvelik and F. Wilczek, A Chern-Simons effective field theory for the Pfaffian quantum Hall state, Nucl. Phys. B 516 (1998) 704 [cond-mat/9711087] [INSPIRE].
  31. [31]
    M. Greiter, X.G. Wen and F. Wilczek, On paired Hall states, Nucl. Phys. B 374 (1992) 567 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    B.I. Halperin, Theory of the quantized Hall conductance, Helv. Phys. Acta 56 (1983) 75 [INSPIRE].Google Scholar
  33. [33]
    G.W. Moore and N. Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B 360 (1991) 362 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    M. Milovanovic and N. Read, Edge excitations of paired fractional quantum Hall states, Phys. Rev. B 53 (1996) 13559 [cond-mat/9602113] [INSPIRE].
  35. [35]
    N. Read and E. Rezayi, Beyond paired quantum Hall states: Parafermions and incompressible states in the first excited Landau level, Phys. Rev. B 59 (1999) 8084 [cond-mat/9809384] [INSPIRE].
  36. [36]
    J.M. Cornwall, On the phase transition in D = 3 Yang-Mills Chern-Simons gauge theory, Phys. Rev. D 54 (1996) 1814 [hep-th/9602157] [INSPIRE].ADSGoogle Scholar
  37. [37]
    D. Karabali, C.-j. Kim and V.P. Nair, Gauge invariant variables and the Yang-Mills-Chern-Simons theory, Nucl. Phys. B 566 (2000) 331 [hep-th/9907078] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops, confinement and phase transitions in large-N gauge theories from supergravity, JHEP 06 (1998) 001 [hep-th/9803263] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    O. Aharony and E. Witten, Anti-de Sitter space and the center of the gauge group, JHEP 11 (1998) 018 [hep-th/9807205] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    J.M. Maldacena, G.W. Moore and N. Seiberg, D-brane charges in five-brane backgrounds, JHEP 10 (2001) 005 [hep-th/0108152] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    M.J. Teper, SU(N ) gauge theories in (2+1)-dimensions, Phys. Rev. D 59 (1999) 014512 [hep-lat/9804008] [INSPIRE].
  44. [44]
    J.A. Harvey and A.B. Royston, Localized modes at a D-brane-O-plane intersection and heterotic Alice atrings, JHEP 04 (2008) 018 [arXiv:0709.1482] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    E.I. Buchbinder, J. Gomis and F. Passerini, Holographic gauge theories in background fields and surface operators, JHEP 12 (2007) 101 [arXiv:0710.5170] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    J.A. Harvey and A.B. Royston, Gauge/Gravity duality with a chiral N=(0,8) string defect, JHEP 08 (2008) 006 [arXiv:0804.2854] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    M.J. Rodriguez and P. Talavera, A 1+1 field theory spectrum from M-theory, hep-th/0508058 [INSPIRE].
  49. [49]
    H.-U. Yee and I. Zahed, Holographic two dimensional QCD and Chern-Simons term, JHEP 07 (2011) 033 [arXiv:1103.6286] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    M. Fujita, C. Melby-Thompson, R. Meyer and S. Sugimoto, work in progress.Google Scholar
  55. [55]
    S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the Canonical Quantization of the Chern-Simons-Witten Theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    J.L. Davis, M. Gutperle, P. Kraus and I. Sachs, Stringy NJLS and Gross-Neveu models at finite density and temperature, JHEP 10 (2007) 049 [arXiv:0708.0589] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    K. Jensen, Chiral anomalies and AdS/CMT in two dimensions, JHEP 01 (2011) 109 [arXiv:1012.4831] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    W.A. Bardeen and B. Zumino, Consistent and Covariant Anomalies in Gauge and Gravitational Theories, Nucl. Phys. B 244 (1984) 421 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    N.D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17 (1966) 1133 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys. 31 (1973) 259 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    D. Anninos, S.A. Hartnoll and N. Iqbal, Holography and the Coleman-Mermin-Wagner theorem, Phys. Rev. D 82 (2010) 066008 [arXiv:1005.1973] [INSPIRE].ADSGoogle Scholar
  62. [62]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    T. Nishioka and T. Takayanagi, AdS Bubbles, Entropy and Closed String Tachyons, JHEP 01 (2007) 090 [hep-th/0611035] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    O. Ben-Ami, D. Carmi and J. Sonnenschein, Holographic Entanglement Entropy of Multiple Strips, JHEP 11 (2014) 144 [arXiv:1409.6305] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    O. Aharony and D. Kutasov, Holographic Duals of Long Open Strings, Phys. Rev. D 78 (2008) 026005 [arXiv:0803.3547] [INSPIRE].ADSMathSciNetGoogle Scholar
  68. [68]
    K. Hashimoto, T. Hirayama, F.-L. Lin and H.-U. Yee, Quark Mass Deformation of Holographic Massless QCD, JHEP 07 (2008) 089 [arXiv:0803.4192] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    R. McNees, R.C. Myers and A. Sinha, On quark masses in holographic QCD, JHEP 11 (2008) 056 [arXiv:0807.5127] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of large-N c QCD, JHEP 05 (2004) 041 [hep-th/0311270] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    O. Aharony, J. Sonnenschein and S. Yankielowicz, A holographic model of deconfinement and chiral symmetry restoration, Annals Phys. 322 (2007) 1420 [hep-th/0604161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    N. Jokela, G. Lifschytz and M. Lippert, Holographic anyonic superfluidity, JHEP 10 (2013) 014 [arXiv:1307.6336] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    N. Jokela, G. Lifschytz and M. Lippert, Flowing holographic anyonic superfluid, JHEP 10 (2014) 21 [arXiv:1407.3794] [INSPIRE].ADSGoogle Scholar
  74. [74]
    M. Lippert, R. Meyer and A. Taliotis, A holographic model for the fractional quantum Hall effect, JHEP 01 (2015) 023 [arXiv:1409.1369] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    X. Wen, Edge transport properties of the fractional quantum Hall states and weak impurity scattering of one-dimensional ‘Charge density wave’, Phys. Rev. B 44 (1991) 5708 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    C.L. Kane and M.P.A. Fisher, Transport in a one-channel luttinger liquid, Phys. Rev. Lett. 68 (1992) 1220.ADSCrossRefGoogle Scholar
  77. [77]
    X.-G. Wen, Topological order and edge structure of nu=1/2 quantum Hall state, Phys. Rev. Lett. 70 (1993) 355 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    X. Wen, Quantum field theory of many-body systems, Oxford University Press, Oxford U.K. (2004).Google Scholar
  79. [79]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Mitsutoshi Fujita
    • 1
    • 2
  • Charles M. Melby-Thompson
    • 3
    • 4
  • René Meyer
    • 5
    • 4
    Email author
  • Shigeki Sugimoto
    • 6
    • 4
  1. 1.Department of Physics and AstronomyUniversity of KentuckyLexingtonU.S.A.
  2. 2.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan
  3. 3.Department of PhysicsFudan UniversityShanghaiChina
  4. 4.Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS)The University of TokyoKashiwaJapan
  5. 5.Department of Physics and AstronomyStony Brook UniversityStony BrookU.S.A.
  6. 6.Center for Gravitational Physics, Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations