A to Z of the muon anomalous magnetic moment in the MSSM with Pati-Salam at the GUT scale

  • Alexander S. Belyaev
  • José E. Camargo-Molina
  • Steve F. King
  • David J. Miller
  • António P. Morais
  • Patrick B. Schaefers
Open Access
Regular Article - Theoretical Physics

Abstract

We analyse the low energy predictions of the minimal supersymmetric standard model (MSSM) arising from a GUT scale Pati-Salam gauge group further constrained by an A4 × Z5 family symmetry, resulting in four soft scalar masses at the GUT scale: one left-handed soft mass m0 and three right-handed soft masses m1, m2, m3, one for each generation. We demonstrate that this model, which was initially developed to describe the neutrino sector, can explain collider and non-collider measurements such as the dark matter relic density, the Higgs boson mass and, in particular, the anomalous magnetic moment of the muon (g − 2)μ. Since about two decades, (g − 2)μ suffers a puzzling about 3σ excessoftheexperimentallymeasuredvalueoverthetheoreticalprediction,whichour model is able to fully resolve. As the consequence of this resolution, our model predicts specific regions of the parameter space with the specific properties including light smuons and neutralinos, which could also potentially explain di-lepton excesses observed by CMS and ATLAS.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    D.J.H. Chung et al., The soft supersymmetry breaking Lagrangian: theory and applications, Phys. Rept. 407 (2005) 1 [hep-ph/0312378] [INSPIRE].
  2. [2]
    Muon g-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  3. [3]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  4. [4]
    Muon g-2 collaboration, J. Grange et al., Muon (g − 2) technical design report, arXiv:1501.06858 [INSPIRE].
  5. [5]
    J-PARC g-’2/EDM collaboration, N. Saito, A novel precision measurement of muon g-2 and EDM at J-PARC, AIP Conf. Proc. 1467 (2012) 45.Google Scholar
  6. [6]
    F. Jegerlehner and A. Nyffeler, The muon g − 2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].
  7. [7]
    T. Blum et al., The muon (g − 2) theory value: present and future, arXiv:1311.2198 [INSPIRE].
  8. [8]
    M. Benayoun et al., Hadronic contributions to the muon anomalous magnetic moment Workshop. (g − 2)μ : quo vadis? Workshop. Mini proceedings, arXiv:1407.4021.
  9. [9]
    M. Knecht, The muon anomalous magnetic moment, Nucl. Part. Phys. Proc. 258-259 (2015) 235 [arXiv:1412.1228] [INSPIRE].
  10. [10]
    T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete tenth-order QED contribution to the muon g − 2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A.L. Kataev, Analytical eighth-order light-by-light QED contributions from leptons with heavier masses to the anomalous magnetic moment of electron, Phys. Rev. D 86 (2012) 013010 [arXiv:1205.6191] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R. Lee, P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Four-loop corrections with two closed fermion loops to fermion self energies and the lepton anomalous magnetic moment, JHEP 03 (2013) 162 [arXiv:1301.6481] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Anomalous magnetic moment with heavy virtual leptons, Nucl. Phys. B 879 (2014) 1 [arXiv:1311.2471] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  14. [14]
    A. Kurz, T. Liu, P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Light-by-light-type corrections to the muon anomalous magnetic moment at four-loop order, Phys. Rev. D 92 (2015) 073019 [arXiv:1508.00901] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. D 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].
  16. [16]
    C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g − 2)μ afte r the Higgs boson mass measurement, Phys. Rev. D 88 (2013) 053005 [arXiv:1306.5546] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. Nyffeler, Hadronic light-by-light scattering in the muon g − 2: a new short-distance constraint on pion-exchange, Phys. Rev. D 79 (2009) 073012 [arXiv:0901.1172] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α M Z , Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  19. [19]
    K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2)μ and α(M Z2) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].
  20. [20]
    M. Benayoun, P. David, L. DelBuono and F. Jegerlehner, An update of the HLS estimate of the muon g − 2, Eur. Phys. J. C 73 (2013) 2453 [arXiv:1210.7184] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersive approach to hadronic light-by-light scattering, JHEP 09 (2014) 091 [arXiv:1402.7081] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B 734 (2014) 144 [arXiv:1403.6400] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera and P. Stoffer, Remarks on higher-order hadronic corrections to the muon g − 2, Phys. Lett. B 735 (2014) 90 [arXiv:1403.7512] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Colangelo, M. Hoferichter, B. Kubis, M. Procura and P. Stoffer, Towards a data-driven analysis of hadronic light-by-light scattering, Phys. Lett. B 738 (2014) 6 [arXiv:1408.2517] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    V. Pauk and M. Vanderhaeghen, Anomalous magnetic moment of the muon in a dispersive approach, Phys. Rev. D 90 (2014) 113012 [arXiv:1409.0819] [INSPIRE].ADSGoogle Scholar
  26. [26]
    G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic light-by-light scattering: theoretical foundations, JHEP 09 (2015) 074 [arXiv:1506.01386] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  27. [27]
    M. Benayoun, P. David, L. DelBuono and F. Jegerlehner, Muon g − 2 estimates: can one trust effective Lagrangians and global fits?, Eur. Phys. J. C 75 (2015) 613 [arXiv:1507.02943] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Blum, S. Chowdhury, M. Hayakawa and T. Izubuchi, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett. 114 (2015) 012001 [arXiv:1407.2923] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L. Jin, T. Blum, N. Christ, M. Hayakawa, T. Izubuchi and C. Lehner, Lattice Calculation of the Connected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment, in the 12th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2015), May 19-24, Vail, Colorado, U.S.A. (2015), arXiv:1509.08372 [INSPIRE].
  30. [30]
    B. Chakraborty, C.T.H. Davies, J. Koponen, G.P. Lepage, M.J. Peardon and S.M. Ryan, Estimate of the hadronic vacuum polarization disconnected contribution to the anomalous magnetic moment of the muon from lattice QCD, Phys. Rev. D 93 (2016) 074509 [arXiv:1512.03270] [INSPIRE].ADSGoogle Scholar
  31. [31]
    C. Aubin, T. Blum, P. Chau, M. Golterman, S. Peris and C. Tu, Finite-volume effects in the muon anomalous magnetic moment on the lattice, Phys. Rev. D 93 (2016) 054508 [arXiv:1512.07555] [INSPIRE].ADSGoogle Scholar
  32. [32]
    T. Blum et al., Calculation of the hadronic vacuum polarization disconnected contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 116 (2016) 232002 [arXiv:1512.09054] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J.A. Grifols and A. Mendez, Constraints on supersymmetric particle masses from (g − 2) μ, Phys. Rev. D 26 (1982) 1809 [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.R. Ellis, J.S. Hagelin and D.V. Nanopoulos, Spin 0 leptons and the anomalous magnetic moment of the muon, Phys. Lett. B 116 (1982) 283 [INSPIRE].ADSGoogle Scholar
  35. [35]
    J. Chakrabortty, S. Mohanty and S. Rao, Non-universal gaugino mass GUT models in the light of dark matter and LHC constraints, JHEP 02 (2014) 074 [arXiv:1310.3620] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Chakrabortty, A. Choudhury and S. Mondal, Non-universal gaugino mass models under the lamppost of muon (g − 2), JHEP 07 (2015) 038 [arXiv:1503.08703] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R. Barbieri and L. Maiani, The muon anomalous magnetic moment in broken supersymmetric theories, Phys. Lett. B 117 (1982) 203 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D.A. Kosower, L.M. Krauss and N. Sakai, Low-energy supergravity and the anomalous magnetic moment of the muon, Phys. Lett. B 133 (1983) 305 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T.C. Yuan, R.L. Arnowitt, A.H. Chamseddine and P. Nath, Supersymmetric electroweak effects on g − 2 (μ), Z. Phys. C 26 (1984) 407 [INSPIRE].ADSGoogle Scholar
  40. [40]
    J.C. Romao, A. Barroso, M.C. Bento and G.C. Branco, Flavor violation in supersymmetric theories, Nucl. Phys. B 250 (1985) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J.L. Lopez, D.V. Nanopoulos and X. Wang, Large (g − 2) -μ in SU(5) × U(1) supergravity models, Phys. Rev. D 49 (1994) 366 [hep-ph/9308336] [INSPIRE].
  42. [42]
    T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].
  43. [43]
    S.P. Martin and J.D. Wells, Constraints on ultraviolet stable fixed points in supersymmetric gauge theories, Phys. Rev. D 64 (2001) 036010 [hep-ph/0011382] [INSPIRE].
  44. [44]
    A. Czarnecki and W.J. Marciano, The Muon anomalous magnetic moment: a harbinger for ‘new physics’, Phys. Rev. D 64 (2001) 013014 [hep-ph/0102122] [INSPIRE].
  45. [45]
    G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g − 2, JHEP 11 (2011) 068 [arXiv:1104.1769] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in supersymmetric models with vector-like matters, Phys. Rev. D 84 (2011) 075017 [arXiv:1108.3071] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass, muon g − 2 and LHC prospects in gauge mediation models with vector-like matters, Phys. Rev. D 85 (2012) 095012 [arXiv:1112.5653] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Endo, K. Hamaguchi, S. Iwamoto, K. Nakayama and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in the U(1) extended MSSM, Phys. Rev. D 85 (2012) 095006 [arXiv:1112.6412] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J.L. Evans, M. Ibe, S. Shirai and T.T. Yanagida, A 125 GeV Higgs boson and muon g − 2 in more generic gauge mediation, Phys. Rev. D 85 (2012) 095004 [arXiv:1201.2611] [INSPIRE].ADSGoogle Scholar
  50. [50]
    M. Endo, K. Hamaguchi, S. Iwamoto and T. Yoshinaga, Muon g − 2 vs. LHC in supersymmetric models, JHEP 01 (2014) 123 [arXiv:1303.4256] [INSPIRE].
  51. [51]
    S. Mohanty, S. Rao and D.P. Roy, Reconciling the muon g − 2 and dark matter relic density with the LHC results in nonuniversal gaugino mass models, JHEP 09 (2013) 027 [arXiv:1303.5830] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Ibe, T.T. Yanagida and N. Yokozaki, Muon g − 2 and 125 GeV Higgs in split-family supersymmetry, JHEP 08 (2013) 067 [arXiv:1303.6995] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Akula and P. Nath, Gluino-driven radiative breaking, Higgs boson mass, muon g − 2 and the Higgs diphoton decay in supergravity unification, Phys. Rev. D 87 (2013) 115022 [arXiv:1304.5526] [INSPIRE].ADSGoogle Scholar
  54. [54]
    N. Okada, S. Raza and Q. Shafi, Particle spectroscopy of supersymmetric SU(5) in light of 125 GeV Higgs and muon g − 2 data, Phys. Rev. D 90 (2014) 015020 [arXiv:1307.0461] [INSPIRE].ADSGoogle Scholar
  55. [55]
    M. Endo, K. Hamaguchi, T. Kitahara and T. Yoshinaga, Probing bino contribution to muon g−2, JHEP 11 (2013) 013 [arXiv:1309.3065] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    G. Bhattacharyya, B. Bhattacherjee, T.T. Yanagida and N. Yokozaki, A practical GMSB model for explaining the muon (g − 2) with gauge coupling unification, Phys. Lett. B 730 (2014) 231 [arXiv:1311.1906] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    I. Gogoladze, F. Nasir, Q. Shafi and C.S. Un, Nonuniversal gaugino masses and muon g − 2, Phys. Rev. D 90 (2014) 035008 [arXiv:1403.2337] [INSPIRE].ADSGoogle Scholar
  58. [58]
    J. Kersten, J.-h. Park, D. Stöckinger and L. Velasco-Sevilla, Understanding the correlation between (g − 2)μ and μeγ in the MSSM, JHEP 08 (2014) 118 [arXiv:1405.2972] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    T. Li and S. Raza, Electroweak supersymmetry from the generalized minimal supergravity model in the MSSM, Phys. Rev. D 91 (2015) 055016 [arXiv:1409.3930] [INSPIRE].ADSGoogle Scholar
  60. [60]
    W.-C. Chiu, C.-Q. Geng and D. Huang, Correlation between muon g − 2 and μ, Phys. Rev. D 91 (2015) 013006 [arXiv:1409.4198] [INSPIRE].ADSGoogle Scholar
  61. [61]
    M. Badziak, Z. Lalak, M. Lewicki, M. Olechowski and S. Pokorski, Upper bounds on sparticle masses from muon g − 2 and the Higgs mass and the complementarity of future colliders, JHEP 03 (2015) 003 [arXiv:1411.1450] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    L. Calibbi, I. Galon, A. Masiero, P. Paradisi and Y. Shadmi, Charged slepton flavor post the 8 TeV LHC: a simplified model analysis of low-energy constraints and LHC SUSY searches, JHEP 10 (2015) 043 [arXiv:1502.07753] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    K. Kowalska, L. Roszkowski, E.M. Sessolo and A.J. Williams, GUT-inspired SUSY and the muon g − 2 anomaly: prospects for LHC 14 TeV, JHEP 06 (2015) 020 [arXiv:1503.08219] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    F. Wang, W. Wang and J.M. Yang, Reconcile muon g − 2 anomaly with LHC data in SUGRA with generalized gravity mediation, JHEP 06 (2015) 079 [arXiv:1504.00505] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    P. Bechtle et al., Constrained supersymmetry after two years of LHC data: a global view with fittino, JHEP 06 (2012) 098 [arXiv:1204.4199] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    O. Buchmueller et al., The CMSSM and NUHM1 in Light of 7 TeV LHC, B sμ + μ and XENON100 data, Eur. Phys. J. C 72 (2012) 2243 [arXiv:1207.7315] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    C. Balázs, A. Buckley, D. Carter, B. Farmer and M. White, Should we still believe in constrained supersymmetry?, Eur. Phys. J. C 73 (2013) 2563 [arXiv:1205.1568] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    D.J. Miller and A.P. Morais, Supersymmetric SU(5) grand unification for a post Higgs boson era, JHEP 10 (2013) 226 [arXiv:1307.1373] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    D.J. Miller and A.P. Morais, Supersymmetric SO(10) grand unification at the LHC and beyond, JHEP 12 (2014) 132 [arXiv:1408.3013] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    H. Baer, A. Belyaev, T. Krupovnickas and A. Mustafayev, SUSY normal scalar mass hierarchy reconciles (g − 2) (μ), bsγ and relic density, JHEP 06 (2004) 044 [hep-ph/0403214] [INSPIRE].
  71. [71]
    MSSM Working Group collaboration, A. Djouadi et al., The minimal supersymmetric standard model: group summary report, hep-ph/9901246 [INSPIRE].
  72. [72]
    S.F. King, A to Z of flavour with Pati-Salam, JHEP 08 (2014) 130 [arXiv:1406.7005] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  74. [74]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  75. [75]
    ATLAS, CMS collaboration, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  76. [76]
    BaBar collaboration, J.P. Lees et al., Exclusive measurements of bsγ transition rate and photon energy spectrum, Phys. Rev. D 86 (2012) 052012 [arXiv:1207.2520] [INSPIRE].
  77. [77]
    CMS collaboration, Measurement of the B sμ + μ branching fraction and search for B0 → μ + μ with the CMS Experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025] [INSPIRE].
  78. [78]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  80. [80]
    M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: confronting your favourite new physics model with LHC data, Comput. Phys. Commun. 187 (2015) 227 [arXiv:1312.2591] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  82. [82]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 04 (2014) 169 [arXiv:1402.7029] [INSPIRE].
  83. [83]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector,ATLAS-CONF-2013-035 (2013).
  84. [84]
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].
  85. [85]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: a program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Stability of the CMSSM against sfermion VEVs, JHEP 12 (2013) 103 [arXiv:1309.7212] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Vevacious: a tool for finding the global minima of one-loop effective potentials with many scalars, Eur. Phys. J. C 73 (2013) 2588 [arXiv:1307.1477] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Alexander S. Belyaev
    • 1
    • 2
  • José E. Camargo-Molina
    • 5
  • Steve F. King
    • 1
  • David J. Miller
    • 4
  • António P. Morais
    • 3
    • 5
  • Patrick B. Schaefers
    • 1
  1. 1.School of Physics & AstronomyUniversity of SouthamptonSouthamptonU.K.
  2. 2.Particle Physics Department, Rutherford Appleton LaboratoryChilton, Didcot, OxonU.K.
  3. 3.Departamento de FísicaUniversidade de Aveiro and CIDMAAveiroPortugal
  4. 4.SUPA, School of Physics and AstronomyUniversity of GlasgowGlasgowU.K.
  5. 5.Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations