Advertisement

Large mass hierarchies from strongly-coupled dynamics

  • Andreas Athenodorou
  • Ed Bennett
  • Georg Bergner
  • Daniel Elander
  • C.-J. David Lin
  • Biagio LuciniEmail author
  • Maurizio Piai
Open Access
Regular Article - Theoretical Physics

Abstract

Besides the Higgs particle discovered in 2012, with mass 125 GeV, recent LHC data show tentative signals for new resonances in diboson as well as diphoton searches at high center-of-mass energies (2 TeV and 750 GeV, respectively). If these signals are confirmed (or other new resonances are discovered at the TeV scale), the large hierarchies between masses of new bosons require a dynamical explanation. Motivated by these tentative signals of new physics, we investigate the theoretical possibility that large hierarchies in the masses of glueballs could arise dynamically in new strongly-coupled gauge theories extending the standard model of particle physics. We study lattice data on non-Abelian gauge theories in the (near-)conformal regime as well as a simple toy model in the context of gauge/gravity dualities. We focus our attention on the ratio R between the mass of the lightest spin-2 and spin-0 resonances, that for technical reasons is a particularly convenient and clean observable to study. For models in which (non-perturbative) large anomalous dimensions arise dynamically, we show indications that this mass ratio can be large, with R>5. Moreover,our results suggest that R might be related to universal properties of the IR fixed point. Our findings provide an interesting step towards understanding large mass ratios in the non-perturbative regime of quantum field theories with (near) IR conformal behaviour.

Keywords

Technicolor and Composite Models Gauge-gravity correspondence Lattice Quantum Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    ATLAS collaboration, Search for resonances decaying to photon pairs in 3.2 fb−1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-081, CERN, Geneva Switzerland (2015).
  4. [4]
    CMS collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-004, CERN, Geneva Switzerland (2015).
  5. [5]
    CMS collaboration, Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at \( \sqrt{s}=8 \) TeV, JHEP 08 (2014) 174 [arXiv:1405.3447] [INSPIRE].
  6. [6]
    CMS collaboration, Search for heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 74 (2014) 3149 [arXiv:1407.3683] [INSPIRE].
  7. [7]
    CMS collaboration, Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052009 [arXiv:1501.04198] [INSPIRE].
  8. [8]
    ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].
  9. [9]
    CMS collaboration, Search for massive W H resonances decaying into the \( \ell \nu \mathrm{b}\overline{\mathrm{b}} \) final state at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 76 (2016) 237 [arXiv:1601.06431] [INSPIRE].
  10. [10]
    S. Weinberg, Implications of dynamical symmetry breaking: an addendum, Phys. Rev. D 19 (1979) 1277 [INSPIRE].ADSGoogle Scholar
  11. [11]
    L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].ADSGoogle Scholar
  12. [12]
    S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974 [INSPIRE].ADSGoogle Scholar
  13. [13]
    B. Holdom, Techniodor, Phys. Lett. B 150 (1985) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Yamawaki, M. Bando and K.-I. Matumoto, Scale invariant technicolor model and a technidilaton, Phys. Rev. Lett. 56 (1986) 1335 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    T.W. Appelquist, D. Karabali and L.C.R. Wijewardhana, Chiral hierarchies and the flavor changing neutral current problem in technicolor, Phys. Rev. Lett. 57 (1986) 957 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Lane, Two lectures on technicolor, hep-ph/0202255 [INSPIRE].
  17. [17]
    C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [INSPIRE].
  18. [18]
    A. Martin, Predicted signals at the LHC from technicolor: Erice lecture, Subnucl. Ser. 46 (2011) 135 [arXiv:0812.1841] [INSPIRE].Google Scholar
  19. [19]
    F. Sannino, Conformal dynamics for TeV physics and cosmology, Acta Phys. Polon. B 40 (2009) 3533 [arXiv:0911.0931] [INSPIRE].Google Scholar
  20. [20]
    M. Piai, Lectures on walking technicolor, holography and gauge/gravity dualities, Adv. High Energy Phys. 2010 (2010) 464302 [arXiv:1004.0176] [INSPIRE].CrossRefzbMATHGoogle Scholar
  21. [21]
    R.S. Chivukula, Lectures on technicolor and compositeness, hep-ph/0011264 [INSPIRE].
  22. [22]
    L. Del Debbio, IR fixed points in lattice field theories, Int. J. Mod. Phys. A 29 (2014) 1445006 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    B. Lucini, Numerical results for gauge theories near the conformal window, J. Phys. Conf. Ser. 631 (2015) 012065 [arXiv:1503.00371] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T. DeGrand, Lattice tests of beyond Standard Model dynamics, Rev. Mod. Phys. 88 (2016) 015001 [arXiv:1510.05018] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Giedt, Anomalous dimensions on the lattice, Int. J. Mod. Phys. A 31 (2016) 1630011 [arXiv:1512.09330] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    D. Nogradi and A. Patella, Strong dynamics, composite Higgs and the conformal window, in Lattice gauge theories beyond QCD, B. Lucini and M. Panero eds., to be published in a special issue of Int. J. Mod. Phys. A.Google Scholar
  27. [27]
    C.J. Morningstar and M.J. Peardon, The glueball spectrum from an anisotropic lattice study, Phys. Rev. D 60 (1999) 034509 [hep-lat/9901004] [INSPIRE].
  28. [28]
    B. Lucini and M. Teper, SU(N ) gauge theories in four-dimensions: exploring the approach to N = ∞, JHEP 06 (2001) 050 [hep-lat/0103027] [INSPIRE].
  29. [29]
    B. Lucini, M. Teper and U. Wenger, Glueballs and k-strings in SU(N ) gauge theories: calculations with improved operators, JHEP 06 (2004) 012 [hep-lat/0404008] [INSPIRE].
  30. [30]
    Y. Chen et al., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D 73 (2006) 014516 [hep-lat/0510074] [INSPIRE].
  31. [31]
    E. Gregory et al., Towards the glueball spectrum from unquenched lattice QCD, JHEP 10 (2012) 170 [arXiv:1208.1858] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    B. Lucini, A. Rago and E. Rinaldi, Glueball masses in the large-N limit, JHEP 08 (2010) 119 [arXiv:1007.3879] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, Conformal versus confining scenario in SU(2) with adjoint fermions, Phys. Rev. D 80 (2009) 074507 [arXiv:0907.3896] [INSPIRE].ADSGoogle Scholar
  34. [34]
    L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, Mesonic spectroscopy of minimal walking technicolor, Phys. Rev. D 82 (2010) 014509 [arXiv:1004.3197] [INSPIRE].ADSGoogle Scholar
  35. [35]
    L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, The infrared dynamics of minimal walking technicolor, Phys. Rev. D 82 (2010) 014510 [arXiv:1004.3206] [INSPIRE].ADSGoogle Scholar
  36. [36]
    F. Bursa et al., Improved lattice spectroscopy of minimal walking technicolor, Phys. Rev. D 84 (2011) 034506 [arXiv:1104.4301] [INSPIRE].ADSGoogle Scholar
  37. [37]
    L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, Large volumes and spectroscopy of walking theories, Phys. Rev. D 93 (2016) 054505 [arXiv:1512.08242] [INSPIRE].ADSGoogle Scholar
  38. [38]
    S. Catterall and F. Sannino, Minimal walking on the lattice, Phys. Rev. D 76 (2007) 034504 [arXiv:0705.1664] [INSPIRE].ADSGoogle Scholar
  39. [39]
    L. Del Debbio, A. Patella and C. Pica, Higher representations on the lattice: numerical simulations. SU(2) with adjoint fermions, Phys. Rev. D 81 (2010) 094503 [arXiv:0805.2058] [INSPIRE].
  40. [40]
    S. Catterall, J. Giedt, F. Sannino and J. Schneible, Phase diagram of SU(2) with 2 flavors of dynamical adjoint quarks, JHEP 11 (2008) 009 [arXiv:0807.0792] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Hietanen, J. Rantaharju, K. Rummukainen and K. Tuominen, Minimal technicolor on the lattice, Nucl. Phys. A 820 (2009) 191c [INSPIRE].
  42. [42]
    S. Catterall, J. Giedt, F. Sannino and J. Schneible, Probes of nearly conformal behavior in lattice simulations of minimal walking technicolor, arXiv:0910.4387 [INSPIRE].
  43. [43]
    A.J. Hietanen, K. Rummukainen and K. Tuominen, Evolution of the coupling constant in SU(2) lattice gauge theory with two adjoint fermions, Phys. Rev. D 80 (2009) 094504 [arXiv:0904.0864] [INSPIRE].ADSGoogle Scholar
  44. [44]
    T. DeGrand, Y. Shamir and B. Svetitsky, Infrared fixed point in SU(2) gauge theory with adjoint fermions, Phys. Rev. D 83 (2011) 074507 [arXiv:1102.2843] [INSPIRE].ADSGoogle Scholar
  45. [45]
    J. Rantaharju, K. Rummukainen and K. Tuominen, Running coupling in SU(2) with adjoint fermions, arXiv:1301.2373 [INSPIRE].
  46. [46]
    J. Rantaharju, T. Rantalaiho, K. Rummukainen and K. Tuominen, Running coupling in SU(2) gauge theory with two adjoint fermions, Phys. Rev. D 93 (2016) 094509 [arXiv:1510.03335] [INSPIRE].ADSGoogle Scholar
  47. [47]
    J. Rantaharju, Gradient flow coupling in the SU(2) gauge theory with two adjoint fermions, Phys. Rev. D 93 (2016) 094516 [arXiv:1512.02793] [INSPIRE].ADSGoogle Scholar
  48. [48]
    B. Lucini, Strongly interacting dynamics beyond the Standard Model on a spacetime lattice, Phil. Trans. Roy. Soc. Lond. A 368 (2010) 3657 [arXiv:0911.0020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    F. Bursa, L. Del Debbio, L. Keegan, C. Pica and T. Pickup, Mass anomalous dimension in SU(2) with two adjoint fermions, Phys. Rev. D 81 (2010) 014505 [arXiv:0910.4535] [INSPIRE].ADSGoogle Scholar
  50. [50]
    S. Catterall, L. Del Debbio, J. Giedt and L. Keegan, MCRG minimal walking technicolor, Phys. Rev. D 85 (2012) 094501 [arXiv:1108.3794] [INSPIRE].ADSGoogle Scholar
  51. [51]
    J. Giedt and E. Weinberg, Finite size scaling in minimal walking technicolor, Phys. Rev. D 85 (2012) 097503 [arXiv:1201.6262] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A. Patella, A precise determination of the \( \overline{\psi}\psi \) anomalous dimension in conformal gauge theories, Phys. Rev. D 86 (2012) 025006 [arXiv:1204.4432] [INSPIRE].ADSGoogle Scholar
  53. [53]
    B. Lucini, A. Patella, A. Rago and E. Rinaldi, Infrared conformality and bulk critical points: SU(2) with heavy adjoint quarks, JHEP 11 (2013) 106 [arXiv:1309.1614] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Athenodorou, E. Bennett, G. Bergner and B. Lucini, Infrared regime of SU(2) with one adjoint Dirac flavor, Phys. Rev. D 91 (2015) 114508 [arXiv:1412.5994] [INSPIRE].ADSGoogle Scholar
  55. [55]
    G. Delfino, Integrable field theory and critical phenomena: the Ising model in a magnetic field, J. Phys. A 37 (2004) R45 [hep-th/0312119] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  56. [56]
    J.L. Cardy, Scaling and renormalization in statistical physics, Cambridge lecture notes in physics 3, Cambridge Univ. Pr., Cambridge U.K. (1996) [INSPIRE].
  57. [57]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    M. Bianchi, M. Prisco and W. Mueck, New results on holographic three point functions, JHEP 11 (2003) 052 [hep-th/0310129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    M. Berg, M. Haack and W. Mueck, Bulk dynamics in confining gauge theories, Nucl. Phys. B 736 (2006) 82 [hep-th/0507285] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    M. Berg, M. Haack and W. Mueck, Glueballs vs. gluinoballs: fluctuation spectra in non-AdS/non-CFT, Nucl. Phys. B 789 (2008) 1 [hep-th/0612224] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    D. Elander, Glueball spectra of SQCD-like theories, JHEP 03 (2010) 114 [arXiv:0912.1600] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  65. [65]
    D. Elander and M. Piai, Light scalars from a compact fifth dimension, JHEP 01 (2011) 026 [arXiv:1010.1964] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  66. [66]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    R.C. Brower, S.D. Mathur and C.-I. Tan, Glueball spectrum for QCD from AdS supergravity duality, Nucl. Phys. B 587 (2000) 249 [hep-th/0003115] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    D. Elander, A.F. Faedo, C. Hoyos, D. Mateos and M. Piai, Multiscale confining dynamics from holographic RG flows, JHEP 05 (2014) 003 [arXiv:1312.7160] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    J.M. Maldacena and C. Núñez, Towards the large-N limit of pure N = 1 super Yang-Mills, Phys. Rev. Lett. 86 (2001) 588 [hep-th/0008001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    A.H. Chamseddine and M.S. Volkov, Non-Abelian BPS monopoles in N = 4 gauged supergravity, Phys. Rev. Lett. 79 (1997) 3343 [hep-th/9707176] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    C. Núñez, I. Papadimitriou and M. Piai, Walking dynamics from string duals, Int. J. Mod. Phys. A 25 (2010) 2837 [arXiv:0812.3655] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    D. Elander, C. Núñez and M. Piai, A light scalar from walking solutions in gauge-string duality, Phys. Lett. B 686 (2010) 64 [arXiv:0908.2808] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    D. Elander and M. Piai, On the glueball spectrum of walking backgrounds from wrapped-D5 gravity duals, Nucl. Phys. B 871 (2013) 164 [arXiv:1212.2600] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    D. Elander, Light scalar from deformations of the Klebanov-Strassler background, Phys. Rev. D 91 (2015) 126012 [arXiv:1401.3412] [INSPIRE].ADSGoogle Scholar
  76. [76]
    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, The supergravity dual of N = 1 super Yang-Mills theory, Nucl. Phys. B 569 (2000) 451 [hep-th/9909047] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    K. Pilch and N.P. Warner, N = 1 supersymmetric renormalization group flows from IIB supergravity, Adv. Theor. Math. Phys. 4 (2002) 627 [hep-th/0006066] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    W. Mueck and M. Prisco, Glueball scattering amplitudes from holography, JHEP 04 (2004) 037 [hep-th/0402068] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    L. Maiani and M. Testa, Final state interactions from Euclidean correlation functions, Phys. Lett. B 245 (1990) 585 [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    V.A. Miransky, Dynamics in the conformal window in QCD like theories, Phys. Rev. D 59 (1999) 105003 [hep-ph/9812350] [INSPIRE].
  81. [81]
    L. Del Debbio and R. Zwicky, Scaling relations for the entire spectrum in mass-deformed conformal gauge theories, Phys. Lett. B 700 (2011) 217 [arXiv:1009.2894] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    L. Del Debbio and R. Zwicky, Hyperscaling relations in mass-deformed conformal gauge theories, Phys. Rev. D 82 (2010) 014502 [arXiv:1005.2371] [INSPIRE].ADSGoogle Scholar
  83. [83]
    J.D. Bjorken, Elements of quantum chromodynamics, in Proc. Summer Institute on Particle Physics, A. Mosher ed., SLAC report no 224, U.S.A. (1980) [INSPIRE].
  84. [84]
    M. Lüscher, Advanced lattice QCD, hep-lat/9802029 [INSPIRE].
  85. [85]
    A. González-Arroyo, J. Jurkiewicz and C.P. Korthals-Altes, Ground state metamorphosis for Yang-Mills fields on a finite periodic lattice, CPT-81-P-1336, Freiburg Germany (1981) [INSPIRE].
  86. [86]
    A. Coste, A. González-Arroyo, J. Jurkiewicz and C.P. Korthals Altes, Zero momentum contribution to Wilson loops in periodic boxes, Nucl. Phys. B 262 (1985) 67 [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    G. ’t Hooft, A property of electric and magnetic flux in non-Abelian gauge theories, Nucl. Phys. B 153 (1979) 141 [INSPIRE].
  88. [88]
    A. Coste, A. González-Arroyo, C.P. Korthals Altes, B. Soderberg and A. Tarancon, Finite size effects and twisted boundary conditions, Nucl. Phys. B 287 (1987) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    A. González Arroyo and C.P. Korthals Altes, The spectrum of Yang-Mills theory in a small twisted box, Nucl. Phys. B 311 (1988) 433 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  90. [90]
    D. Daniel, A. González-Arroyo, C.P. Korthals Altes and B. Soderberg, Energy spectrum of SU(2) Yang-Mills fields with space-like symmetric twist, Phys. Lett. B 221 (1989) 136 [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    D. Daniel, A. González-Arroyo and C.P. Korthals Altes, The energy levels of lattice gauge theory in a small twisted box, Phys. Lett. B 251 (1990) 559 [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    M. Lüscher, Some analytic results concerning the mass spectrum of Yang-Mills gauge theories on a torus, Nucl. Phys. B 219 (1983) 233 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  93. [93]
    M. Lüscher and G. Münster, Weak coupling expansion of the low lying energy values in the SU(2) gauge theory on a torus, Nucl. Phys. B 232 (1984) 445 [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states, Commun. Math. Phys. 104 (1986) 177 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  95. [95]
    M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states, Commun. Math. Phys. 105 (1986) 153 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  96. [96]
    R. Apreda, D.E. Crooks, N.J. Evans and M. Petrini, Confinement, glueballs and strings from deformed AdS, JHEP 05 (2004) 065 [hep-th/0308006] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  97. [97]
    P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  98. [98]
    D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov, Conformality lost, Phys. Rev. D 80 (2009) 125005 [arXiv:0905.4752] [INSPIRE].ADSzbMATHGoogle Scholar
  99. [99]
    L. Vecchi, Multitrace deformations, Gamow states and stability of AdS/CFT, JHEP 04 (2011) 056 [arXiv:1005.4921] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  100. [100]
    L. Vecchi, Technicolor at criticality, JHEP 04 (2011) 127 [arXiv:1007.4573] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    M. Falcioni et al., On the masses of the glueballs in pure SU(2) lattice gauge theory, Phys. Lett. B 110 (1982) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    G. Münster, Strong coupling expansions for the mass gap in lattice gauge theories, Nucl. Phys. B 190 (1981) 439 [Erratum ibid. B 200 (1982) 536] [Erratum ibid. B 205 (1982) 648] [INSPIRE].
  103. [103]
    C.-K. Wen and H.-X. Yang, QCD 4 glueball masses from AdS 6 black hole description, Mod. Phys. Lett. A 20 (2005) 997 [hep-th/0404152] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  104. [104]
    M. Bochicchio, Glueball and meson propagators of any spin in large-N QCD, Nucl. Phys. B 875 (2013) 621 [arXiv:1305.0273] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  105. [105]
    M. Bochicchio, Glueball and meson spectrum in large-N massless QCD, arXiv:1308.2925 [INSPIRE].
  106. [106]
    R. Franceschini et al., What is the γγ resonance at 750 GeV?, JHEP 03 (2016) 144 [arXiv:1512.04933] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    C. Han, H.M. Lee, M. Park and V. Sanz, The diphoton resonance as a gravity mediator of dark matter, Phys. Lett. B 755 (2016) 371 [arXiv:1512.06376] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    V. Sanz, Theoretical interpretation of a spin-two diphoton excess, arXiv:1603.05574 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Andreas Athenodorou
    • 1
  • Ed Bennett
    • 2
    • 3
  • Georg Bergner
    • 4
  • Daniel Elander
    • 5
  • C.-J. David Lin
    • 6
    • 7
  • Biagio Lucini
    • 2
    Email author
  • Maurizio Piai
    • 2
  1. 1.Department of PhysicsUniversity of CyprusNicosiaCyprus
  2. 2.Department of Physics, College of ScienceSwansea UniversitySwanseaU.K.
  3. 3.Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI)Nagoya UniversityNagoyaJapan
  4. 4.Albert Einstein Center for Fundamental Physics, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland
  5. 5.National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical PhysicsUniversity of the WitwatersrandJohannesburgSouth Africa
  6. 6.Institute of PhysicsNational Chiao-Tung UniversityHsinchuTaiwan
  7. 7.CNRS, Aix Marseille UniversitéUniversité de Toulon, Centre de Physique Théorique, UMR 7332MarseilleFrance

Personalised recommendations