# The arithmetic of elliptic fibrations in gauge theories on a circle

## Abstract

The geometry of elliptic fibrations translates to the physics of gauge theories in F-theory. We systematically develop the dictionary between arithmetic structures on elliptic curves as well as desingularized elliptic fibrations and symmetries of gauge theories on a circle. We show that the Mordell-Weil group law matches integral large gauge transformations around the circle in Abelian gauge theories and explain the significance of Mordell-Weil torsion in this context. We also use Higgs transitions and circle large gauge transformations to introduce a group law for genus-one fibrations with multi-sections. Finally, we introduce a novel arithmetic structure on elliptic fibrations with non-Abelian gauge groups in F-theory. It is defined on the set of exceptional divisors resolving the singularities and divisor classes of sections of the fibration. This group structure can be matched with certain integral non-Abelian large gauge transformations around the circle when studying the theory on the lower-dimensional Coulomb branch. Its existence is required by consistency with Higgs transitions from the non-Abelian theory to its Abelian phases in which it becomes the Mordell-Weil group. This hints towards the existence of a new underlying geometric symmetry.

## Keywords

Effective field theories F-Theory Gauge Symmetry M-Theory## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]C. Vafa,
*Evidence for F-theory*,*Nucl. Phys.***B 469**(1996) 403 [hep-th/9602022] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [2]D.R. Morrison and C. Vafa,
*Compactifications of F-theory on Calabi-Yau threefolds (II)*,*Nucl. Phys.***B 476**(1996) 437 [hep-th/9603161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [3]T.W. Grimm and T. Weigand,
*On Abelian Gauge Symmetries and Proton Decay in Global F-theory GUTs*,*Phys. Rev.***D 82**(2010) 086009 [arXiv:1006.0226] [INSPIRE].ADSGoogle Scholar - [4]D.S. Park,
*Anomaly Equations and Intersection Theory*,*JHEP***01**(2012) 093 [arXiv:1111.2351] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [5]D.R. Morrison and D.S. Park,
*F-Theory and the Mordell-Weil Group of Elliptically-Fibered Calabi-Yau Threefolds*,*JHEP***10**(2012) 128 [arXiv:1208.2695] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [6]V. Braun, T.W. Grimm and J. Keitel,
*New Global F-theory GUTs with*U(1)*symmetries*,*JHEP***09**(2013) 154 [arXiv:1302.1854] [INSPIRE].ADSMathSciNetGoogle Scholar - [7]J. Borchmann, C. Mayrhofer, E. Palti and T. Weigand,
*Elliptic fibrations for*SU(5) × U(1) × U(1)*F-theory vacua*,*Phys. Rev.***D 88**(2013) 046005 [arXiv:1303.5054] [INSPIRE].ADSGoogle Scholar - [8]M. Cvetič, D. Klevers and H. Piragua,
*F-Theory Compactifications with Multiple*U(1)*-Factors: Constructing Elliptic Fibrations with Rational Sections*,*JHEP***06**(2013) 067 [arXiv:1303.6970] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [9]T.W. Grimm, A. Kapfer and J. Keitel,
*Effective action of*6*D F-theory with*U(1)*factors: Rational sections make Chern-Simons terms jump*,*JHEP***07**(2013) 115 [arXiv:1305.1929] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [10]V. Braun, T.W. Grimm and J. Keitel,
*Geometric Engineering in Toric F-theory and GUTs with*U(1)*Gauge Factors*,*JHEP***12**(2013) 069 [arXiv:1306.0577] [INSPIRE].ADSCrossRefGoogle Scholar - [11]M. Cvetič, A. Grassi, D. Klevers and H. Piragua,
*Chiral Four-Dimensional F-theory Compactifications With*SU(5)*and Multiple*U(1)*-Factors*,*JHEP***04**(2014) 010 [arXiv:1306.3987] [INSPIRE].ADSCrossRefGoogle Scholar - [12]J. Borchmann, C. Mayrhofer, E. Palti and T. Weigand, SU(5)
*Tops with Multiple*U(1)*s in F-theory*,*Nucl. Phys.***B 882**(2014) 1 [arXiv:1307.2902] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [13]M. Cvetič, D. Klevers and H. Piragua,
*F-Theory Compactifications with Multiple*U(1)*-Factors: addendum*,*JHEP***12**(2013) 056 [arXiv:1307.6425] [INSPIRE].ADSCrossRefGoogle Scholar - [14]M. Cvetič, D. Klevers, H. Piragua and P. Song,
*Elliptic fibrations with rank three Mordell-Weil group: F-theory with*U(1) × U(1) × U(1)*gauge symmetry*,*JHEP***03**(2014) 021 [arXiv:1310.0463] [INSPIRE].ADSCrossRefGoogle Scholar - [15]D. Klevers, D.K. Mayorga Pena, P.-K. Oehlmann, H. Piragua and J. Reuter,
*F-Theory on all Toric Hypersurface Fibrations and its Higgs Branches*,*JHEP***01**(2015) 142 [arXiv:1408.4808] [INSPIRE].ADSCrossRefGoogle Scholar - [16]C. Lawrie, S. Schäfer-Nameki and J.-M. Wong,
*F-theory and All Things Rational: Surveying*U(1)*Symmetries with Rational Sections*,*JHEP***09**(2015) 144 [arXiv:1504.05593] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [17]M. Cvetič, D. Klevers, H. Piragua and W. Taylor,
*General*U(1) × U(1)*F-theory compactifications and beyond: geometry of unHiggsings and novel matter structure*,*JHEP***11**(2015) 204 [arXiv:1507.05954] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [18]T.W. Grimm and A. Kapfer,
*Anomaly Cancelation in Field Theory and F-theory on a Circle*, arXiv:1502.05398 [INSPIRE]. - [19]T.W. Grimm and H. Hayashi,
*F-theory fluxes, Chirality and Chern-Simons theories*,*JHEP***03**(2012) 027 [arXiv:1111.1232] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [20]M. Cvetič, T.W. Grimm and D. Klevers,
*Anomaly Cancellation And Abelian Gauge Symmetries In F-theory*,*JHEP***02**(2013) 101 [arXiv:1210.6034] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [21]H. Hayashi, C. Lawrie, D.R. Morrison and S. Schäfer-Nameki,
*Box Graphs and Singular Fibers*,*JHEP***05**(2014) 048 [arXiv:1402.2653] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [22]A.P. Braun and S. Schäfer-Nameki,
*Box Graphs and Resolutions I*,*Nucl. Phys.***B 905**(2016) 447 [arXiv:1407.3520] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [23]M. Esole, S.-H. Shao and S.-T. Yau,
*Singularities and Gauge Theory Phases*,*Adv. Theor. Math. Phys.***19**(2015) 1183 [arXiv:1402.6331] [INSPIRE].CrossRefGoogle Scholar - [24]M. Esole, S.-H. Shao and S.-T. Yau,
*Singularities and Gauge Theory Phases II*, arXiv:1407.1867 [INSPIRE]. - [25]J. de Boer et al.,
*Triples, fluxes and strings*,*Adv. Theor. Math. Phys.***4**(2002) 995 [hep-th/0103170] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [26]V. Braun and D.R. Morrison,
*F-theory on Genus-One Fibrations*,*JHEP***08**(2014) 132 [arXiv:1401.7844] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [27]D.R. Morrison and W. Taylor,
*Sections, multisections and*U(1)*fields in F-theory*, arXiv:1404.1527 [INSPIRE]. - [28]M. Cvetič, R. Donagi, D. Klevers, H. Piragua and M. Poretschkin,
*F-theory vacua with*\( {\mathrm{\mathbb{Z}}}_3 \)*gauge symmetry*,*Nucl. Phys.***B 898**(2015) 736 [arXiv:1502.06953] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [29]V. Braun, T.W. Grimm and J. Keitel,
*Complete Intersection Fibers in F-theory*,*JHEP***03**(2015) 125 [arXiv:1411.2615] [INSPIRE].MathSciNetCrossRefGoogle Scholar - [30]L.B. Anderson, I. García-Etxebarria, T.W. Grimm and J. Keitel,
*Physics of F-theory compactifications without section*,*JHEP***12**(2014) 156 [arXiv:1406.5180] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [31]I. García-Etxebarria, T.W. Grimm and J. Keitel,
*Yukawas and discrete symmetries in F-theory compactifications without section*,*JHEP***11**(2014) 125 [arXiv:1408.6448] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [32]C. Mayrhofer, E. Palti, O. Till and T. Weigand,
*Discrete Gauge Symmetries by Higgsing in four-dimensional F-theory Compactifications*,*JHEP***12**(2014) 068 [arXiv:1408.6831] [INSPIRE].ADSCrossRefGoogle Scholar - [33]C. Mayrhofer, E. Palti, O. Till and T. Weigand,
*On Discrete Symmetries and Torsion Homology in F-theory*,*JHEP***06**(2015) 029 [arXiv:1410.7814] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [34]P.K. Townsend, K. Pilch and P. van Nieuwenhuizen,
*Selfduality in Odd Dimensions*,*Phys. Lett.***B 136**(1984) 38 [*Addendum ibid.***B 136**(1984) 443] [INSPIRE]. - [35]F. Bonetti, T.W. Grimm and S. Hohenegger,
*A Kaluza-Klein inspired action for chiral p-forms and their anomalies*,*Phys. Lett.***B 720**(2013) 424 [arXiv:1206.1600] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [36]F. Bonetti and T.W. Grimm,
*Six-dimensional (1,0) effective action of F-theory via M-theory on Calabi-Yau threefolds*,*JHEP***05**(2012) 019 [arXiv:1112.1082] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [37]M.B. Green and J.H. Schwarz,
*Anomaly Cancellation in Supersymmetric D*= 10*Gauge Theory and Superstring Theory*,*Phys. Lett.***B 149**(1984) 117 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [38]A. Sagnotti,
*A Note on the Green-Schwarz mechanism in open string theories*,*Phys. Lett.***B 294**(1992) 196 [hep-th/9210127] [INSPIRE].ADSCrossRefGoogle Scholar - [39]V. Sadov,
*Generalized Green-Schwarz mechanism in F-theory*,*Phys. Lett.***B 388**(1996) 45 [hep-th/9606008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [40]T.W. Grimm,
*The N*= 1*effective action of F-theory compactifications*,*Nucl. Phys.***B 845**(2011) 48 [arXiv:1008.4133] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [41]J.A. Harvey,
*Magnetic monopoles, duality and supersymmetry*, in proceedings of the*Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 96): Fields, Strings, and Duality*, Boulder, Colorado U.S.A., 2–28 June (1996). hep-th/9603086 [INSPIRE]. - [42]T. Banks and N. Seiberg,
*Symmetries and Strings in Field Theory and Gravity*,*Phys. Rev.***D 83**(2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSGoogle Scholar - [43]S. Hellerman and E. Sharpe,
*Sums over topological sectors and quantization of Fayet-Iliopoulos parameters*,*Adv. Theor. Math. Phys.***15**(2011) 1141 [arXiv:1012.5999] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [44]D.R. Morrison and C. Vafa,
*Compactifications of F-theory on Calabi-Yau threefolds. (I)*,*Nucl. Phys.***B 473**(1996) 74 [hep-th/9602114] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [45]S. Ferrara, R. Minasian and A. Sagnotti,
*Low-energy analysis of M- and F- theories on Calabi-Yau threefolds*,*Nucl. Phys.***B 474**(1996) 323 [hep-th/9604097] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [46]
- [47]C. Mayrhofer, D.R. Morrison, O. Till and T. Weigand,
*Mordell-Weil Torsion and the Global Structure of Gauge Groups in F-theory*,*JHEP***10**(2014) 16 [arXiv:1405.3656] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [48]J.H. Silverman,
*The arithmetic of elliptic curves*, in Graduate Texts in Mathematics, volume 106, Springer-Verlag, New York U.S.A. (2009).Google Scholar - [49]P.S. Aspinwall and D.R. Morrison,
*Nonsimply connected gauge groups and rational points on elliptic curves*,*JHEP***07**(1998) 012 [hep-th/9805206] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [50]D.R. Morrison and W. Taylor,
*Classifying bases for*6*D F-theory models*,*Central Eur. J. Phys.***10**(2012) 1072 [arXiv:1201.1943] [INSPIRE].ADSzbMATHGoogle Scholar