Evidence for a nonplanar amplituhedron

Abstract

The scattering amplitudes of planar \( \mathcal{N} \) = 4 super-Yang-Mills exhibit a number of remarkable analytic structures, including dual conformal symmetry and logarithmic singularities of integrands. The amplituhedron is a geometric construction of the integrand that incorporates these structures. This geometric construction further implies the amplitude is fully specified by constraining it to vanish on spurious residues. By writing the amplitude in a dlog basis, we provide nontrivial evidence that these analytic properties and “zero conditions” carry over into the nonplanar sector. This suggests that the concept of the amplituhedron can be extended to the nonplanar sector of \( \mathcal{N} \) = 4 super-Yang-Mills theory.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J. Drummond, J. Henn, V. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    N. Beisert and M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys. B 670 (2003) 439 [hep-th/0307042] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].

    Google Scholar 

  7. [7]

    J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    L.J. Mason and D. Skinner, The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation functions to Wilson loops, JHEP 09 (2011) 123 [arXiv:1007.3243] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    B. Basso, A. Sever and P. Vieira, Spacetime and flux tube S-matrices at finite coupling for N =4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    B. Basso, J. Caetano, L. Cordova, A. Sever and P. Vieira, OPE for all helicity amplitudes, JHEP 08 (2015) 018 [arXiv:1412.1132] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    B. Basso, A. Sever and P. Vieira, Hexagonal Wilson loops in planar \( \mathcal{N} \) = 4 SYM theory at finite coupling, arXiv:1508.0304.

  16. [16]

    L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP 01 (2012) 024 [arXiv:1111.1704] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP 12 (2013) 049 [arXiv:1308.2276] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP 10 (2014) 065 [arXiv:1408.1505] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, arXiv:1509.0812.

  21. [21]

    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic amplitudes and cluster coordinates, JHEP 01 (2014) 091 [arXiv:1305.1617] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    J.M. Drummond, G. Papathanasiou and M. Spradlin, A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV heptagon, JHEP 03 (2015) 072 [arXiv:1412.3763] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    D. Parker, A. Scherlis, M. Spradlin and A. Volovich, Hedgehog bases for A n cluster polylogarithms and an application to six-point amplitudes, JHEP 11 (2015) 136 [arXiv:1507.0195].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    N. Arkani-Hamedet al., Scattering amplitudes and the positive grassmannian, arXiv:1212.5605.

  26. [26]

    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    N. Arkani-Hamed, F. Cachazo and C. Cheung, The grassmannian origin of dual superconformal invariance, JHEP 03 (2010) 036 [arXiv:0909.0483] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    L.J. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of residues and grassmannian dualities, JHEP 01 (2011) 049 [arXiv:0912.4912] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Local spacetime physics from the grassmannian, JHEP 01 (2011) 108 [arXiv:0912.3249] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    Y.-T. Huang and C. Wen, ABJM amplitudes and the positive orthogonal grassmannian, JHEP 02 (2014) 104 [arXiv:1309.3252] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  33. [33]

    Y.-t. Huang, C. Wen and D. Xie, The positive orthogonal grassmannian and loop amplitudes of ABJM, J. Phys. A 47 (2014) 474008 [arXiv:1402.1479] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  34. [34]

    J. Kim and S. Lee, Positroid stratification of orthogonal grassmannian and ABJM amplitudes, JHEP 09 (2014) 085 [arXiv:1402.1119] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. [35]

    H. Elvang et al., Grassmannians for scattering amplitudes in 4D \( \mathcal{N} \) = 4 SYM and 3D ABJM, JHEP 12 (2014) 181 [arXiv:1410.0621] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    N. Arkani-Hamed and J. Trnka, The amplituhedron, JHEP 10 (2014) 030 [arXiv:1312.2007] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    N. Arkani-Hamed and J. Trnka, Into the amplituhedron, JHEP 12 (2014) 182 [arXiv:1312.7878] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    S. Franco, D. Galloni, A. Mariotti and J. Trnka, Anatomy of the amplituhedron, JHEP 03 (2015) 128 [arXiv:1408.3410] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  39. [39]

    Y. Bai and S. He, The amplituhedron from momentum twistor diagrams, JHEP 02 (2015) 065 [arXiv:1408.2459] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    N. Arkani-Hamed, A. Hodges and J. Trnka, Positive amplitudes in the amplituhedron, JHEP 08 (2015) 030 [arXiv:1412.8478] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    T. Lam, Amplituhedron cells and Stanley symmetric functions, Commun. Math. Phys. 343 (2016) 1025 [arXiv:1408.5531] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. [42]

    Y. Bai, S. He and T. Lam, The amplituhedron and the one-loop Grassmannian measure, arXiv:1510.0355.

  43. [43]

    L. Ferro, T. Lukowski, A. Orta and M. Parisi, Towards the amplituhedron volume, arXiv:1512.0495.

  44. [44]

    G. Lusztig, Total positivity in partial flag manifolds, Represent. Theory 2 (1998) 70.

    MathSciNet  Article  MATH  Google Scholar 

  45. [45]

    A. Postnikov, Total positivity, Grassmannians and networks, math/0609764 [INSPIRE].

  46. [46]

    A. Postnikov, D. Speyer and L. Williams, Matching polytopes, toric geometry, and the non-negative part of the Grassmannian, arXiv:0706.2501.

  47. [47]

    L.K. Williams, Enumeration of totally positive Grassmann cells, math/0307271.

  48. [48]

    A.B. Goncharov and R. Kenyon, Dimers and cluster integrable systems, arXiv:1107.5588 [INSPIRE].

  49. [49]

    A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, arXiv:1111.3660.

  50. [50]

    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  51. [51]

    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Singularity structure of maximally supersymmetric scattering amplitudes, Phys. Rev. Lett. 113 (2014) 261603 [arXiv:1410.0354] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka, Logarithmic singularities and maximally supersymmetric amplitudes, JHEP 06 (2015) 202 [arXiv:1412.8584] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. [54]

    S.J. Parke and T.R. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett. 56 (1986) 2459 [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    M.L. Mangano, S.J. Parke and Z. Xu, Duality and multi-gluon scattering, Nucl. Phys. B 298 (1988) 653 [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Postnikov and J. Trnka, On-shell structures of MHV amplitudes beyond the planar limit, JHEP 06 (2015) 179 [arXiv:1412.8475] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    L.J. Dixon, A.J. McLeod, J. Trnka and M. von Hippel, to appear.

  58. [58]

    Z. Bern et al., Three-Loop Superfiniteness of N = 8 Supergravity, Phys. Rev. Lett. 98 (2007) 161303 [hep-th/0702112] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    J.J. Carrasco and H. Johansson, Five-point amplitudes in N = 4 super-Yang-Mills theory and N = 8 supergravity, Phys. Rev. D 85 (2012) 025006 [arXiv:1106.4711] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    Z. Bern, J.J. Carrasco, T. Dennen, Y.-t. Huang and H. Ita, Generalized unitarity and six-dimensional helicity, Phys. Rev. D 83 (2011) 085022 [arXiv:1010.0494] [INSPIRE].

    ADS  Google Scholar 

  61. [61]

    Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  62. [62]

    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

  63. [63]

    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

  64. [64]

    Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  65. [65]

    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  66. [66]

    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  67. [67]

    F. Cachazo, Sharpening the leading singularity, arXiv:0803.1988 [INSPIRE].

  68. [68]

    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude, Phys. Lett. B 662 (2008) 456 [arXiv:0712.4138] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  69. [69]

    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  70. [70]

    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  71. [71]

    J.L. Bourjaily, S. Caron-Huot and J. Trnka, Dual-conformal regularization of infrared loop divergences and the chiral box expansion, JHEP 01 (2015) 001 [arXiv:1303.4734] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    J.L. Bourjaily and J. Trnka, Local integrand representations of all two-loop amplitudes in planar SYM, JHEP 08 (2015) 119 [arXiv:1505.0588].

    ADS  MathSciNet  Article  Google Scholar 

  73. [73]

    Z. Bern, J.S. Rozowsky and B. Yan, Two loop four gluon amplitudes in N = 4 super Yang-Mills, Phys. Lett. B 401 (1997) 273 [hep-ph/9702424] [INSPIRE].

  74. [74]

    R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron colliders, Nucl. Phys. B 312 (1989) 616 [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B 530 (1998) 401 [hep-th/9802162] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes, Phys. Rev. D 85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].

    ADS  Google Scholar 

  77. [77]

    M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].

    ADS  Article  Google Scholar 

  78. [78]

    S. Franco, D. Galloni, B. Penante, and C. Wen, Non-planar on-shell diagrams, JHEP 06 (2015) 199 [arXiv:1502.0203].

    ADS  MathSciNet  Article  Google Scholar 

  79. [79]

    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop selfdual and N = 4 super Yang-Mills, Phys. Lett. B 394 (1997) 105 [hep-th/9611127] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  80. [80]

    Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  81. [81]

    G. Mogull and D. O’Connell, Overcoming obstacles to colour-kinematics duality at two loops, arXiv:1511.0665.

  82. [82]

    A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett. B 595 (2004) 521 [Erratum ibid. B 632 (2006) 754] [hep-th/0404092] [INSPIRE].

  83. [83]

    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation, JHEP 07 (2013) 128 [arXiv:1306.2799] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  85. [85]

    S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP 06 (2014) 114 [arXiv:1404.2922] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  86. [86]

    J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  87. [87]

    T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, arXiv:1511.0540.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zvi Bern.

Additional information

ArXiv ePrint: 1512.08591

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bern, Z., Herrmann, E., Litsey, S. et al. Evidence for a nonplanar amplituhedron. J. High Energ. Phys. 2016, 98 (2016). https://doi.org/10.1007/JHEP06(2016)098

Download citation

Keywords

  • Scattering Amplitudes
  • Extended Supersymmetry