Advertisement

Next-to-leading-order electroweak corrections to pp → W+W → 4 leptons at the LHC

  • B. Biedermann
  • M. Billoni
  • A. Denner
  • S. Dittmaier
  • L. Hofer
  • B. Jäger
  • L. Salfelder
Open Access
Regular Article - Theoretical Physics

Abstract

We present results of the first calculation of next-to-leading-order electroweak corrections to W-boson pair production at the LHC that fully takes into account leptonic W-boson decays and off-shell effects. Employing realistic event selections, we discuss the corrections in situations that are typical for the study of W-boson pairs as a signal process or of Higgs-boson decays H → WW, to which W-boson pair production represents an irreducible background. In particular, we compare the full off-shell results, obtained treating the W-boson resonances in the complex-mass scheme, to previous results in the so-called double-pole approximation, which is based on an expansion of the loop amplitudes about the W resonance poles. At small and intermediate scales, i.e. in particular in angular and rapidity distributions, the two approaches show the expected agreement at the level of fractions of a percent, but larger differences appear in the TeV range. For transverse-momentum distributions, the differences can even exceed the 10% level in the TeV range where “background diagrams” with one instead of two resonant W bosons gain in importance because of recoil effects.

Keywords

NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Measurement of W + W production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector and limits on anomalous W W Z and W W γ couplings, Phys. Rev. D 87 (2013) 112001 [arXiv:1210.2979] [INSPIRE].
  2. [2]
    ATLAS collaboration, Measurement of the W W + W Z cross section and limits on anomalous triple gauge couplings using final states with one lepton, missing transverse momentum and two jets with the ATLAS detector at \( \sqrt{s}=7 \) TeV, JHEP 01 (2015) 049 [arXiv:1410.7238] [INSPIRE].
  3. [3]
    CMS collaboration, Measurement of the W +Wcross section in pp collisions at \( \sqrt{s}=7 \) TeV and limits on anomalous WWγ and WWZ couplings, Eur. Phys. J. C 73 (2013) 2610 [arXiv:1306.1126] [INSPIRE].
  4. [4]
    CMS collaboration, Measurement of the W + W cross section in pp collisions at \( \sqrt{s}=8 \) TeV and limits on anomalous gauge couplings, arXiv:1507.03268 [INSPIRE].
  5. [5]
    J. Ohnemus, An order α s calculation of hadronic W W + production, Phys. Rev. D 44 (1991) 1403 [INSPIRE].ADSGoogle Scholar
  6. [6]
    S. Frixione, A next-to-leading order calculation of the cross-section for the production of W + W pairs in hadronic collisions, Nucl. Phys. B 410 (1993) 280 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    U. Baur, T. Han and J. Ohnemus, QCD corrections and nonstandard three vector boson couplings in W + W production at hadron colliders, Phys. Rev. D 53 (1996) 1098 [hep-ph/9507336] [INSPIRE].
  8. [8]
    L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s ) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].
  9. [9]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].
  10. [10]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].
  11. [11]
    K. Hamilton, A positive-weight next-to-leading order simulation of weak boson pair production, JHEP 01 (2011) 009 [arXiv:1009.5391] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Höche, F. Krauss, M. Schönherr and F. Siegert, Automating the POWHEG method in Sherpa, JHEP 04 (2011) 024 [arXiv:1008.5399] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    T. Melia, P. Nason, R. Röntsch and G. Zanderighi, W + W , WZ and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Nason and G. Zanderighi, W + W , W Z and ZZ production in the POWHEG-BOX-V2, Eur. Phys. J. C 74 (2014) 2702 [arXiv:1311.1365] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T. Gehrmann et al., W + W production at hadron colliders in next to next to leading order QCD, Phys. Rev. Lett. 113 (2014) 212001 [arXiv:1408.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Grazzini, S. Kallweit, S. Pozzorini, D. Rathlev and M. Wiesemann, W + W production at the LHC: fiducial cross sections and distributions in NNLO QCD, arXiv:1605.02716 [INSPIRE].
  18. [18]
    G. Chachamis, M. Czakon and D. Eiras, W pair production at the LHC. I. Two-loop corrections in the high energy limit, JHEP 12 (2008) 003 [arXiv:0802.4028] [INSPIRE].
  19. [19]
    G. Chachamis, M. Czakon and D. Eiras, W pair production at the LHC. II. One-loop squared corrections in the high energy limit, arXiv:0806.3043 [INSPIRE].
  20. [20]
    M. Grazzini, Soft-gluon effects in WW production at hadron colliders, JHEP 01 (2006) 095 [hep-ph/0510337] [INSPIRE].
  21. [21]
    S. Dawson, I.M. Lewis and M. Zeng, Threshold resummed and approximate next-to-next-to-leading order results for W + W pair production at the LHC, Phys. Rev. D 88 (2013) 054028 [arXiv:1307.3249] [INSPIRE].ADSGoogle Scholar
  22. [22]
    Y. Wang, C.S. Li, Z.L. Liu, D.Y. Shao and H.T. Li, Transverse-momentum resummation for gauge boson pair production at the hadron collider, Phys. Rev. D 88 (2013) 114017 [arXiv:1307.7520] [INSPIRE].ADSGoogle Scholar
  23. [23]
    D.A. Dicus, C. Kao and W.W. Repko, Gluon production of gauge bosons, Phys. Rev. D 36 (1987) 1570 [INSPIRE].ADSGoogle Scholar
  24. [24]
    E.W.N. Glover and J.J. van der Bij, Vector boson pair production via gluon fusion, Phys. Lett. B 219 (1989) 488 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced WW background to Higgs boson searches at the LHC, JHEP 03 (2005) 065 [hep-ph/0503094] [INSPIRE].
  26. [26]
    T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W-boson pair production at the LHC, JHEP 12 (2006) 046 [hep-ph/0611170] [INSPIRE].
  27. [27]
    T. Melia, K. Melnikov, R. Röntsch, M. Schulze and G. Zanderighi, Gluon fusion contribution to W + W + jet production, JHEP 08 (2012) 115 [arXiv:1205.6987] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Bellm et al., Anomalous coupling, top-mass and parton-shower effects in W + W production, arXiv:1602.05141 [INSPIRE].
  29. [29]
    F. Cascioli, S. Höche, F. Krauss, P. Maierhöfer, S. Pozzorini and F. Siegert, Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0,1 jet production, JHEP 01 (2014) 046 [arXiv:1309.0500] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to W + W production through gluon fusion, Phys. Lett. B 754 (2016) 275 [arXiv:1511.08617] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    E. Accomando, A. Denner and A. Kaiser, Logarithmic electroweak corrections to gauge-boson pair production at the LHC, Nucl. Phys. B 706 (2005) 325 [hep-ph/0409247] [INSPIRE].
  32. [32]
    E. Accomando and A. Kaiser, Electroweak corrections and anomalous triple gauge-boson couplings in W + W and W ± Z production at the LHC, Phys. Rev. D 73 (2006) 093006 [hep-ph/0511088] [INSPIRE].
  33. [33]
    J.H. Kühn, F. Metzler, A.A. Penin and S. Uccirati, Next-to-next-to-leading electroweak logarithms for W-pair production at LHC, JHEP 06 (2011) 143 [arXiv:1101.2563] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    A. Bierweiler, T. Kasprzik, J.H. Kühn and S. Uccirati, Electroweak corrections to W-boson pair production at the LHC, JHEP 11 (2012) 093 [arXiv:1208.3147] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Bierweiler, T. Kasprzik and J.H. Kühn, Vector-boson pair production at the LHC to \( \mathcal{O}\left({\alpha}^3\right) \) accuracy, JHEP 12 (2013) 071 [arXiv:1305.5402] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Baglio, L.D. Ninh and M.M. Weber, Massive gauge boson pair production at the LHC: a next-to-leading order story, Phys. Rev. D 88 (2013) 113005 [arXiv:1307.4331] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Billóni, S. Dittmaier, B. Jäger and C. Speckner, Next-to-leading order electroweak corrections to ppW + W → 4 leptons at the LHC in double-pole approximation, JHEP 12 (2013) 043 [arXiv:1310.1564] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Gieseke, T. Kasprzik and J.H. Kühn, Vector-boson pair production and electroweak corrections in HERWIG++, Eur. Phys. J. C 74 (2014) 2988 [arXiv:1401.3964] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Dyndal and L. Schoeffel, Four-lepton production from photon-induced reactions in pp collisions at the LHC, arXiv:1511.02065 [INSPIRE].
  40. [40]
    M. Luszczak and A. Szczurek, Subleading processes in production of W + W pairs in proton-proton collisions, arXiv:1309.7201 [INSPIRE].
  41. [41]
    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  42. [42]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Complete electroweak O(α) corrections to charged-current e + e → 4 fermion processes, Phys. Lett. B 612 (2005) 223 [Erratum ibid. B 704 (2011) 667] [hep-ph/0502063] [INSPIRE].
  43. [43]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  44. [44]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, O(α) corrections to e + e W Wfour fermions (+γ): first numerical results from RACOON W W , Phys. Lett. B 475 (2000) 127 [hep-ph/9912261] [INSPIRE].
  45. [45]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Electroweak radiative corrections to e + e W W → 4 fermions in double pole approximation: The RACOONWW approach, Nucl. Phys. B 587 (2000) 67 [hep-ph/0006307] [INSPIRE].
  46. [46]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, RACOONWW1.3: A Monte Carlo program for four fermion production at e + e colliders, Comput. Phys. Commun. 153 (2003) 462 [hep-ph/0209330] [INSPIRE].
  47. [47]
    B. Biedermann, A. Denner, S. Dittmaier, L. Hofer and B. Jäger, Electroweak corrections to ppμ + μ e + e + X at the LHC: a Higgs background study, Phys. Rev. Lett. 116 (2016) 161803 [arXiv:1601.07787] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the Standard Model, JHEP 04 (2013) 037 [arXiv:1211.6316] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, arXiv:1605.01090 [INSPIRE].
  50. [50]
    A. Denner, S. Dittmaier and L. Hofer, COLLIER — A fortran-library for one-loop integrals, PoS(LL2014)071 [arXiv:1407.0087] [INSPIRE].
  51. [51]
    A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex one-loop LIbrary in Extended Regularizations, arXiv:1604.06792 [INSPIRE].
  52. [52]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4 fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].
  53. [53]
    A. Denner and S. Dittmaier, The complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [INSPIRE].
  54. [54]
    A. Bredenstein, S. Dittmaier and M. Roth, Four-fermion production at gamma gamma colliders. 2. Radiative corrections in double-pole approximation, Eur. Phys. J. C 44 (2005) 27 [hep-ph/0506005] [INSPIRE].
  55. [55]
    J. Küblbeck, M. Böhm and A. Denner, Feyn Arts: computer algebraic generation of Feynman graphs and amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
  57. [57]
    E. Accomando, A. Denner and C. Meier, Electroweak corrections to W γ and Zγ production at the LHC, Eur. Phys. J. C 47 (2006) 125 [hep-ph/0509234] [INSPIRE].
  58. [58]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  59. [59]
    T. Hahn, Automatic loop calculations with FeynArts, FormCalc and LoopTools, Nucl. Phys. Proc. Suppl. 89 (2000) 231 [hep-ph/0005029] [INSPIRE].
  60. [60]
    A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].
  61. [61]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].
  62. [62]
    A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].
  64. [64]
    S. Dittmaier, A. Kabelschacht and T. Kasprzik, Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables, Nucl. Phys. B 800 (2008) 146 [arXiv:0802.1405] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    W. Beenakker, F.A. Berends and A.P. Chapovsky, Radiative corrections to pair production of unstable particles: results for e + e four fermions, Nucl. Phys. B 548 (1999) 3 [hep-ph/9811481] [INSPIRE].
  66. [66]
    S. Jadach, W. Placzek, M. Skrzypek, B.F.L. Ward and Z. Was, Final state radiative effects for the exact O(α) YFS exponentiated (un)stable W + W production at and beyond LEP-2 energies, Phys. Rev. D 61 (2000) 113010 [hep-ph/9907436] [INSPIRE].
  67. [67]
    S. Jadach, W. Placzek, M. Skrzypek, B.F.L. Ward and Z. Was, The Monte Carlo event generator YFSWW3 version 1.16 for W pair production and decay at LEP-2/LC energies, Comput. Phys. Commun. 140 (2001) 432 [hep-ph/0103163] [INSPIRE].
  68. [68]
    M.W. Grünewald et al., Reports of the Working Groups on Precision Calculations for LEP2 Physics: Proceedings. Four fermion production in electron positron collisions, hep-ph/0005309 [INSPIRE].
  69. [69]
    S. Dittmaier and C. Schwan, Non-factorizable photonic corrections to resonant production and decay of many unstable particles, Eur. Phys. J. C 76 (2016) 144 [arXiv:1511.01698] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
  71. [71]
    D. Yu. Bardin, A. Leike, T. Riemann and M. Sachwitz, Energy-dependent width effects in e + e annihilation near the Z boson pole, Phys. Lett. B 206 (1988) 539 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    K.P.O. Diener, S. Dittmaier and W. Hollik, Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering, Phys. Rev. D 72 (2005) 093002 [hep-ph/0509084] [INSPIRE].
  73. [73]
    ATLAS collaboration, Measurement of the transverse momentum distribution of Z/γ bosons in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 705 (2011) 415 [arXiv:1107.2381] [INSPIRE].
  74. [74]
    ATLAS collaboration, Observation and measurement of Higgs boson decays to WW with the ATLAS detector, Phys. Rev. D 92 (2015) 012006 [arXiv:1412.2641] [INSPIRE].
  75. [75]
    CMS collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, JHEP 01 (2014) 096 [arXiv:1312.1129] [INSPIRE].
  76. [76]
    M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the HWW(∗) → ℓνℓν decay mode with 4.7/fb of ATLAS data at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 716 (2012) 62 [arXiv:1206.0756] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • B. Biedermann
    • 1
  • M. Billoni
    • 2
  • A. Denner
    • 1
  • S. Dittmaier
    • 3
  • L. Hofer
    • 4
  • B. Jäger
    • 2
  • L. Salfelder
    • 2
  1. 1.Institut für Theoretische Physik und AstrophysikJulius-Maximilians-Universität WürzburgWürzburgGermany
  2. 2.Institut für Theoretische PhysikEberhard Karls Universität TübingenTübingenGermany
  3. 3.Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  4. 4.Department de Fısica Quàntica i Astrofísica (FQA), Institut de Ciències del Cosmos (ICCUB)Universitat de Barcelona (UB)BarcelonaSpain

Personalised recommendations