Singlet extensions of the standard model at LHC Run 2: benchmarks and comparison with the NMSSM

  • Raul Costa
  • Margarete Mühlleitner
  • Marco O. P. Sampaio
  • Rui Santos
Open Access
Regular Article - Theoretical Physics

Abstract

The Complex singlet extension of the Standard Model (CxSM) is the simplest extension that provides scenarios for Higgs pair production with different masses. The model has two interesting phases: the dark matter phase, with a Standard Model-like Higgs boson, a new scalar and a dark matter candidate; and the broken phase, with all three neutral scalars mixing. In the latter phase Higgs decays into a pair of two different Higgs bosons are possible.

In this study we analyse Higgs-to-Higgs decays in the framework of singlet extensions of the Standard Model (SM), with focus on the CxSM. After demonstrating that scenarios with large rates for such chain decays are possible we perform a comparison between the NMSSM and the CxSM. We find that, based on Higgs-to-Higgs decays, the only possibility to distinguish the two models at the LHC run 2 is through final states with two different scalars. This conclusion builds a strong case for searches for final states with two different scalars at the LHC run 2.

Finally, we propose a set of benchmark points for the real and complex singlet extensions to be tested at the LHC run 2. They have been chosen such that the discovery prospects of the involved scalars are maximised and they fulfil the dark matter constraints. Furthermore, for some of the points the theory is stable up to high energy scales. For the computation of the decay widths and branching ratios we developed the Fortran code sHDECAY, which is based on the implementation of the real and complex singlet extensions of the SM in HDECAY.

Keywords

Beyond Standard Model Higgs Physics 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, Production of neutral Higgs boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M.M. Mühlleitner, Higgs particles in the standard model and supersymmetric theories, Ph.D. thesis, Hamburg University, Hamburg, Germany (2000).Google Scholar
  5. [5]
    J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    CMS collaboration, Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV, Phys. Lett. B 749 (2015) 560 [arXiv:1503.04114] [INSPIRE].
  7. [7]
    ATLAS collaboration, A search for resonant Higgs-pair production in the \( b\overline{b}b\overline{b} \) final state in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 114 (2015) 081802 [arXiv:1406.5053] [INSPIRE].
  8. [8]
    ATLAS collaboration, Search for Higgs boson pair production in the \( \gamma \gamma b\overline{b} \) final state using pp collision data at \( \sqrt{s}=8 \) TeV from the ATLAS detector, Phys. Rev. Lett. 114 (2015) 081802 [arXiv:1406.5053] [INSPIRE].
  9. [9]
    CMS collaboration, Search for the resonant production of two Higgs bosons in the final state with two photons and two bottom quarks, CMS-PAS-HIG-13-032 (2014).Google Scholar
  10. [10]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].ADSGoogle Scholar
  12. [12]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a Singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M.C. Bento, O. Bertolami, R. Rosenfeld and L. Teodoro, Selfinteracting dark matter and invisibly decaying Higgs, Phys. Rev. D 62 (2000) 041302 [astro-ph/0003350] [INSPIRE].ADSGoogle Scholar
  14. [14]
    H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The new minimal standard model, Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Kusenko, Sterile neutrinos, dark matter and the pulsar velocities in models with a Higgs singlet, Phys. Rev. Lett. 97 (2006) 241301 [hep-ph/0609081] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J.J. van der Bij, The minimal non-minimal standard model, Phys. Lett. B 636 (2006) 56 [hep-ph/0603082] [INSPIRE].ADSGoogle Scholar
  17. [17]
    X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, Constraints on scalar dark matter from direct experimental searches, Phys. Rev. D 79 (2009) 023521 [arXiv:0811.0658] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum stability, perturbativity and scalar singlet dark matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  19. [19]
    Y. Mambrini, Higgs searches and singlet scalar dark matter: combined constraints from XENON 100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].ADSGoogle Scholar
  20. [20]
    X.-G. He, B. Ren and J. Tandean, Hints of standard model Higgs boson at the LHC and light dark matter searches, Phys. Rev. D 85 (2012) 093019 [arXiv:1112.6364] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Gonderinger, H. Lim and M.J. Ramsey-Musolf, Complex scalar singlet dark matter: vacuum stability and phenomenology, Phys. Rev. D 86 (2012) 043511 [arXiv:1202.1316] [INSPIRE].ADSGoogle Scholar
  22. [22]
    J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025 [arXiv:1306.4710] [INSPIRE].ADSGoogle Scholar
  23. [23]
    E. Gabrielli et al., Towards completing the standard model: vacuum stability, EWSB and dark matter, Phys. Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].ADSGoogle Scholar
  24. [24]
    T. Robens and T. Stefaniak, Status of the Higgs singlet extension of the standard model after LHC run 1, Eur. Phys. J. C 75 (2015) 104 [arXiv:1501.02234] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Profumo, M.J. Ramsey-Musolf, C.L. Wainwright and P. Winslow, Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies, Phys. Rev. D 91 (2015) 035018 [arXiv:1407.5342] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Menon, D.E. Morrissey and C.E.M. Wagner, Electroweak baryogenesis and dark matter in the NMSSM, Phys. Rev. D 70 (2004) 035005 [hep-ph/0404184] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S.J. Huber, T. Konstandin, T. Prokopec and M.G. Schmidt, Electroweak phase transition and baryogenesis in the NMSSM, Nucl. Phys. B 757 (2006) 172 [hep-ph/0606298] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  28. [28]
    S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    V. Barger, D.J.H. Chung, A.J. Long and L.-T. Wang, Strongly first order phase transitions near an enhanced discrete symmetry point, Phys. Lett. B 710 (2012) 1 [arXiv:1112.5460] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.R. Espinosa, T. Konstandin and F. Riva, Strong electroweak phase transitions in the standard model with a singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  31. [31]
    A. Datta and A. Raychaudhuri, Next-to-minimal Higgs: mass bounds and search prospects, Phys. Rev. D 57 (1998) 2940 [hep-ph/9708444] [INSPIRE].ADSGoogle Scholar
  32. [32]
    R. Schabinger and J.D. Wells, A minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the Large Hadron Collider, Phys. Rev. D 72 (2005) 093007 [hep-ph/0509209] [INSPIRE].ADSGoogle Scholar
  33. [33]
    O. Bahat-Treidel, Y. Grossman and Y. Rozen, Hiding the Higgs at the LHC, JHEP 05 (2007) 022 [hep-ph/0611162] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    V. Barger, P. Langacker and G. Shaughnessy, Collider signatures of singlet extended Higgs sectors, Phys. Rev. D 75 (2007) 055013 [hep-ph/0611239] [INSPIRE].ADSGoogle Scholar
  35. [35]
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].ADSGoogle Scholar
  36. [36]
    V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex singlet extension of the Standard Model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [INSPIRE].ADSGoogle Scholar
  37. [37]
    D. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal extension of the standard model scalar sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [INSPIRE].ADSGoogle Scholar
  38. [38]
    R.S. Gupta and J.D. Wells, Higgs boson search significance deformations due to mixed-in scalars, Phys. Lett. B 710 (2012) 154 [arXiv:1110.0824] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Ahriche, A. Arhrib and S. Nasri, Higgs phenomenology in the two-singlet model, JHEP 02 (2014) 042 [arXiv:1309.5615] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    C.-Y. Chen, S. Dawson and I.M. Lewis, Exploring resonant di-Higgs boson production in the Higgs singlet model, Phys. Rev. D 91 (2015) 035015 [arXiv:1410.5488] [INSPIRE].ADSGoogle Scholar
  41. [41]
    P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R. Barbieri, S. Ferrara and C.A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    H.P. Nilles, M. Srednicki and D. Wyler, Weak interaction breakdown induced by supergravity, Phys. Lett. B 120 (1983) 346 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J.M. Frere, D.R.T. Jones and S. Raby, Fermion masses and induction of the weak scale by supergravity, Nucl. Phys. B 222 (1983) 11 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J.P. Derendinger and C.A. Savoy, Quantum effects and SU(2) × U(1) breaking in supergravity gauge theories, Nucl. Phys. B 237 (1984) 307 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J.R. Ellis, J.F. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs bosons in a nonminimal supersymmetric model, Phys. Rev. D 39 (1989) 844 [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Drees, Supersymmetric models with extended Higgs sector, Int. J. Mod. Phys. A 4 (1989) 3635 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Particle spectrum in supersymmetric models with a gauge singlet, Phys. Lett. B 315 (1993) 331 [hep-ph/9307322] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  50. [50]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Higgs phenomenology of the supersymmetric model with a gauge singlet, Z. Phys. C 67 (1995) 665 [hep-ph/9502206] [INSPIRE].ADSMATHGoogle Scholar
  51. [51]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Phenomenology of supersymmetric models with a singlet, Nucl. Phys. B 492 (1997) 21 [hep-ph/9611251] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  52. [52]
    T. Elliott, S.F. King and P.L. White, Unification constraints in the next-to-minimal supersymmetric standard model, Phys. Lett. B 351 (1995) 213 [hep-ph/9406303] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S.F. King and P.L. White, Resolving the constrained minimal and next-to-minimal supersymmetric standard models, Phys. Rev. D 52 (1995) 4183 [hep-ph/9505326] [INSPIRE].ADSGoogle Scholar
  54. [54]
    F. Franke and H. Fraas, Neutralinos and Higgs bosons in the next-to-minimal supersymmetric standard model, Int. J. Mod. Phys. A 12 (1997) 479 [hep-ph/9512366] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Maniatis, The next-to-minimal supersymmetric extension of the standard model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  56. [56]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    D.T. Nhung, M. Muhlleitner, J. Streicher and K. Walz, Higher order corrections to the trilinear Higgs self-couplings in the real NMSSM, JHEP 11 (2013) 181 [arXiv:1306.3926] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. Munir, Novel Higgs-to-125 GeV Higgs boson decays in the complex NMSSM, Phys. Rev. D 89 (2014) 095013 [arXiv:1310.8129] [INSPIRE].ADSGoogle Scholar
  59. [59]
    S.F. King, M. Mühlleitner, R. Nevzorov and K. Walz, Discovery prospects for NMSSM Higgs bosons at the high-energy Large Hadron Collider, Phys. Rev. D 90 (2014) 095014 [arXiv:1408.1120] [INSPIRE].ADSGoogle Scholar
  60. [60]
    L. Wu, J.M. Yang, C.-P. Yuan and M. Zhang, Higgs self-coupling in the MSSM and NMSSM after the LHC Run 1, Phys. Lett. B 747 (2015) 378 [arXiv:1504.06932] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    D. Buttazzo, F. Sala and A. Tesi, Singlet-like Higgs bosons at present and future colliders, JHEP 11 (2015) 158 [arXiv:1505.05488].ADSCrossRefGoogle Scholar
  62. [62]
    M. Mühlleitner, D.T. Nhung and H. Ziesche, The order \( \mathcal{O}\left({\alpha}_t{\alpha}_s\right) \) corrections to the trilinear Higgs self-couplings in the complex NMSSM, JHEP 12 (2015) 034 [arXiv:1506.03321] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    U. Ellwanger, Higgs pair production in the NMSSM at the LHC, JHEP 08 (2013) 077 [arXiv:1306.5541] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    C. Han, X. Ji, L. Wu, P. Wu and J.M. Yang, Higgs pair production with SUSY QCD correction: revisited under current experimental constraints, JHEP 04 (2014) 003 [arXiv:1307.3790] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    J. Cao, D. Li, L. Shang, P. Wu and Y. Zhang, Exploring the Higgs sector of a most natural NMSSM and its prediction on Higgs pair production at the LHC, JHEP 12 (2014) 026 [arXiv:1409.8431] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    D. Fontes, J.C. Romão, R. Santos and J.P. Silva, Undoubtable signs of CP-violation in Higgs boson decays at the LHC run 2, Phys. Rev. D 92 (2015) 055014 [arXiv:1506.06755] [INSPIRE].ADSGoogle Scholar
  67. [67]
    A. Arhrib and R. Benbrik, Searching for a CP-odd Higgs via a pair of gauge bosons at the LHC, hep-ph/0610184 [INSPIRE].
  68. [68]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  69. [69]
    J.M. Butterworth et al., The tools and Monte Carlo working group summary report, from the Les Houches 2009 Workshop on TeV colliders, in the proceedings of the 6th Workshop, dedicated to Thomas Binoth, June 8–26, Les Houches, France (2010).Google Scholar
  70. [70]
    R. Costa, A.P. Morais, M.O.P. Sampaio and R. Santos, Two-loop stability of a complex singlet extended Standard Model, Phys. Rev. D 92 (2015) 025024 [arXiv:1411.4048] [INSPIRE].ADSGoogle Scholar
  71. [71]
    S. Kanemura, M. Kikuchi and K. Yagyu, Radiative corrections to the Higgs boson couplings in the model with an additional real singlet scalar field, arXiv:1511.06211 [INSPIRE].
  72. [72]
    F. Bojarski, G. Chalons, D. Lopez-Val, and T. Robens, Heavy to light Higgs boson decays at NLO in the singlet extension of the standard model, JHEP 02 (2016) 147 [arXiv:1511.08120].ADSCrossRefGoogle Scholar
  73. [73]
    E. Maina, Interference effects in Heavy Higgs production via gluon fusion in the singlet extension of the standard model, JHEP 06 (2015) 004 [arXiv:1501.02139] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    N. Kauer and C. O’Brien, Heavy Higgs signal-background interference in ggVV in the standard model plus real singlet, Eur. Phys. J. C 75 (2015) 374 [arXiv:1502.04113] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    S. Dawson and I.M. Lewis, NLO corrections to double Higgs boson production in the Higgs singlet model, Phys. Rev. D 92 (2015) 094023 [arXiv:1508.05397] [INSPIRE].ADSGoogle Scholar
  76. [76]
    R. Coimbra, M.O.P. Sampaio and R. Santos, ScannerS: constraining the phase diagram of a complex scalar singlet at the LHC, Eur. Phys. J. C 73 (2013) 2428 [arXiv:1301.2599] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    R. Costa et al., ScannerS project, October (2014), http://scanners.hepforge.org.
  78. [78]
    G. Belanger, F. Boudjema and A. Pukhov, micrOMEGAs: a code for the calculation of Dark Matter properties in generic models of particle interaction, (2014), https://lapth.cnrs.fr/micromegas/.
  79. [79]
    P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16.Google Scholar
  80. [80]
    WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].
  81. [81]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  82. [82]
    I. Maksymyk, C.P. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].ADSGoogle Scholar
  83. [83]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  84. [84]
    P. Bechtle et al., HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, ATLAS-CONF-2015-044 (2015).Google Scholar
  86. [86]
    ATLAS and CMS collaboration, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  87. [87]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the standard model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  88. [88]
    M. Spira, HIGLU: a program for the calculation of the total Higgs production cross-section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347.
  89. [89]
    ATLAS collaboration, Search for light scalar top quark pair production in final states with two leptons with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Eur. Phys. J. C 72 (2012) 2237 [arXiv:1208.4305] [INSPIRE].
  90. [90]
    ATLAS collaboration, Search for light top squark pair production in final states with leptons and b jets with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Phys. Lett. B 720 (2013) 13 [arXiv:1209.2102] [INSPIRE].
  91. [91]
    ATLAS collaboration, Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 10 (2013) 189 [arXiv:1308.2631] [INSPIRE].
  92. [92]
    ATLAS collaboration, Search for direct top-squark pair production in final states with two leptons in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 06 (2014) 124 [arXiv:1403.4853] [INSPIRE].
  93. [93]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].
  94. [94]
    ATLAS collaboration, Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 09 (2014) 015 [arXiv:1406.1122] [INSPIRE].
  95. [95]
    ATLAS collaboration, Search for top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 11 (2014) 118 [arXiv:1407.0583] [INSPIRE].
  96. [96]
    ATLAS collaboration, Search for pair-produced third-generation squarks decaying via charm quarks or in compressed supersymmetric scenarios in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052008 [arXiv:1407.0608] [INSPIRE].
  97. [97]
    CMS collaboration, Search for top-squark pair production in the single-lepton final state in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE].
  98. [98]
    CMS collaboration, Search for new physics in events with same-sign dileptons and jets in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2014) 163 [Erratum ibid. 01 (2015) 014] [arXiv:1311.6736] [INSPIRE].
  99. [99]
    CMS collaboration, Search for top squark and higgsino production using diphoton Higgs boson decays, Phys. Rev. Lett. 112 (2014) 161802 [arXiv:1312.3310] [INSPIRE].
  100. [100]
    CMS collaboration, Search for top-squark pairs decaying into Higgs or Z bosons in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 736 (2014) 371 [arXiv:1405.3886] [INSPIRE].
  101. [101]
    CMS collaboration, Search for supersymmetry using razor variables in events with b-tagged jets in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052018 [arXiv:1502.00300] [INSPIRE].
  102. [102]
    CMS collaboration, Searches for supersymmetry using the M T2 variable in hadronic events produced in pp collisions at 8 TeV, JHEP 05 (2015) 078 [arXiv:1502.04358] [INSPIRE].
  103. [103]
    ATLAS collaboration, Search for charged Higgs bosons in the τ +jets final state with pp collision data recorded at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, (2013).Google Scholar
  104. [104]
    CMS collaboration, Updated search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s}=7 \) TeV, MS-PAS-HIG-12-052 (2012).Google Scholar
  105. [105]
    U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: a Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: an updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  107. [107]
    U. Ellwanger and C. Hugonie, NMSPEC: a Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions, Comput. Phys. Commun. 177 (2007) 399 [hep-ph/0612134] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: a program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  109. [109]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: version 1.3, Comput. Phys. Commun. 174 (2006) 577 [hep-ph/0405253] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  110. [110]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  111. [111]
    G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  112. [112]
    P.M. Ferreira, R. Guedes, M.O.P. Sampaio and R. Santos, Wrong sign and symmetric limits and non-decoupling in 2HDMs, JHEP 12 (2014) 067 [arXiv:1409.6723] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    J. Baglio et al., NMSSMCALC: a program package for the calculation of loop-corrected Higgs boson masses and decay widths in the (complex) NMSSM, Comput. Phys. Commun. 185 (2014) 3372 [arXiv:1312.4788] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    S.F. King, M. Muhlleitner, R. Nevzorov and K. Walz, Exploring the CP-violating NMSSM: EDM constraints and phenomenology, Nucl. Phys. B 901 (2015) 526 [arXiv:1508.03255] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  115. [115]
    G. Degrassi and P. Slavich, On the radiative corrections to the neutral Higgs boson masses in the NMSSM, Nucl. Phys. B 825 (2010) 119 [arXiv:0907.4682] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  116. [116]
    K. Ender, T. Graf, M. Muhlleitner and H. Rzehak, Analysis of the NMSSM Higgs boson masses at one-loop level, Phys. Rev. D 85 (2012) 075024 [arXiv:1111.4952] [INSPIRE].ADSGoogle Scholar
  117. [117]
    T. Graf, R. Grober, M. Muhlleitner, H. Rzehak and K. Walz, Higgs boson masses in the complex NMSSM at one-loop level, JHEP 10 (2012) 122 [arXiv:1206.6806] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    M. Mühlleitner, D.T. Nhung, H. Rzehak and K. Walz, Two-loop contributions of the order \( \mathcal{O}\left({\alpha}_t{\alpha}_s\right) \) to the masses of the Higgs bosons in the CP-violating NMSSM, JHEP 05 (2015) 128 [arXiv:1412.0918] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    F. Staub et al., Higgs mass predictions of public NMSSM spectrum generators, Comput. Phys. Commun. 202 (2016) 113 [arXiv:1507.05093] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  120. [120]
    A. Arhrib, P.M. Ferreira and R. Santos, Are there hidden scalars in LHC Higgs results?, JHEP 03 (2014) 053 [arXiv:1311.1520] [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].ADSGoogle Scholar
  122. [122]
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  123. [123]
    R. Contino, M. Ghezzi, C. Grojean, M. Mühlleitner and M. Spira, eHDECAY: an implementation of the Higgs effective lagrangian into HDECAY, Comput. Phys. Commun. 185 (2014) 3412 [arXiv:1403.3381] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    R. Harlander et al., Interim recommendations for the evaluation of Higgs production cross sections and branching ratios at the LHC in the Two-Higgs-Doublet Model, arXiv:1312.5571.
  125. [125]
    E. Braaten and J.P. Leveille, Higgs boson decay and the running mass, Phys. Rev. D 22 (1980) 715 [INSPIRE].ADSGoogle Scholar
  126. [126]
    N. Sakai, Perturbative QCD corrections to the hadronic decay width of the Higgs boson, Phys. Rev. D 22 (1980) 2220 [INSPIRE].ADSGoogle Scholar
  127. [127]
    T. Inami and T. Kubota, Renormalization group estimate of the hadronic decay width of the Higgs boson, Nucl. Phys. B 179 (1981) 171 [INSPIRE].ADSCrossRefGoogle Scholar
  128. [128]
    M. Drees and K.-i. Hikasa, Heavy quark thresholds in Higgs physics, Phys. Rev. D 41 (1990) 1547 [INSPIRE].ADSGoogle Scholar
  129. [129]
    M. Drees and K.-i. Hikasa, Note on QCD corrections to hadronic Higgs decay, Phys. Lett. B 240 (1990) 455 [Erratum ibid. B 262 (1991) 497] [INSPIRE].
  130. [130]
    S.G. Gorishnii, A.L. Kataev, S.A. Larin and L.R. Surguladze, Corrected three loop QCD correction to the correlator of the quark scalar currents and γ Tot(H 0Hadrons), Mod. Phys. Lett. A 5 (1990) 2703 [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    S.G. Gorishnii, A.L. Kataev, S.A. Larin and L.R. Surguladze, Scheme dependence of the next to next-to-leading QCD corrections to Γtot(H 0hadrons) and the spurious QCD infrared fixed point, Phys. Rev. D 43 (1991) 1633 [INSPIRE].ADSGoogle Scholar
  132. [132]
    A.L. Kataev and V.T. Kim, The effects of the QCD corrections to \( \Gamma \left({H}^0\to b\overline{b}\right) \), Mod. Phys. Lett. A 9 (1994) 1309 [INSPIRE].ADSCrossRefGoogle Scholar
  133. [133]
    S.G. Gorishnii, A.L. Kataev and S.A. Larin, The width of Higgs boson decay into hadrons: three loop corrections of strong interactions, Sov. J. Nucl. Phys. 40 (1984) 329 [INSPIRE].Google Scholar
  134. [134]
    L.R. Surguladze, Quark mass effects in fermionic decays of the Higgs boson in O(α S2) perturbative QCD, Phys. Lett. B 341 (1994) 60 [hep-ph/9405325] [INSPIRE].ADSCrossRefGoogle Scholar
  135. [135]
    S.A. Larin, T. van Ritbergen and J.A.M. Vermaseren, The Large top quark mass expansion for Higgs boson decays into bottom quarks and into gluons, Phys. Lett. B 362 (1995) 134 [hep-ph/9506465] [INSPIRE].ADSCrossRefGoogle Scholar
  136. [136]
    K.G. Chetyrkin and A. Kwiatkowski, Second order QCD corrections to scalar and pseudoscalar Higgs decays into massive bottom quarks, Nucl. Phys. B 461 (1996) 3 [hep-ph/9505358] [INSPIRE].ADSCrossRefGoogle Scholar
  137. [137]
    K.G. Chetyrkin, Correlator of the quark scalar currents and Γtot(Hhadrons) at O(α S3) in pQCD, Phys. Lett. B 390 (1997) 309 [hep-ph/9608318] [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Scalar correlator at O(α s4), Higgs decay into b-quarks and bounds on the light quark masses, Phys. Rev. Lett. 96 (2006) 012003 [hep-ph/0511063] [INSPIRE].ADSCrossRefGoogle Scholar
  139. [139]
    T. Inami, T. Kubota and Y. Okada, Effective gauge theory and the effect of heavy quarks in Higgs boson decays, Z. Phys. C 18 (1983) 69.ADSGoogle Scholar
  140. [140]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].ADSCrossRefGoogle Scholar
  141. [141]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, SUSY Higgs production at proton colliders, Phys. Lett. B 318 (1993) 347 [INSPIRE].ADSCrossRefGoogle Scholar
  142. [142]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].ADSCrossRefGoogle Scholar
  143. [143]
    M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].ADSCrossRefGoogle Scholar
  144. [144]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order α S4, Phys. Rev. Lett. 79 (1997) 353 [hep-ph/9705240] [INSPIRE].ADSCrossRefGoogle Scholar
  145. [145]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(α S3) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].ADSGoogle Scholar
  146. [146]
    Y. Schröder and M. Steinhauser, Four-loop decoupling relations for the strong coupling, JHEP 01 (2006) 051 [hep-ph/0512058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  147. [147]
    K.G. Chetyrkin, J.H. Kuhn and C. Sturm, QCD decoupling at four loops, Nucl. Phys. B 744 (2006) 121 [hep-ph/0512060] [INSPIRE].ADSCrossRefGoogle Scholar
  148. [148]
    P.A. Baikov and K.G. Chetyrkin, Top quark mediated Higgs boson decay into hadrons to order α s5, Phys. Rev. Lett. 97 (2006) 061803 [hep-ph/0604194] [INSPIRE].ADSCrossRefGoogle Scholar
  149. [149]
    H.-Q. Zheng and D.-D. Wu, First order QCD corrections to the decay of the Higgs boson into two photons, Phys. Rev. D 42 (1990) 3760 [INSPIRE].ADSGoogle Scholar
  150. [150]
    A. Djouadi, M. Spira, J.J. van der Bij and P.M. Zerwas, QCD corrections to γγ decays of Higgs particles in the intermediate mass range, Phys. Lett. B 257 (1991) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  151. [151]
    S. Dawson and R.P. Kauffman, QCD corrections to Hγγ, Phys. Rev. D 47 (1993) 1264 [INSPIRE].ADSGoogle Scholar
  152. [152]
    A. Djouadi, M. Spira and P.M. Zerwas, Two photon decay widths of Higgs particles, Phys. Lett. B 311 (1993) 255 [hep-ph/9305335] [INSPIRE].ADSCrossRefGoogle Scholar
  153. [153]
    K. Melnikov and O.I. Yakovlev, Higgstwo photon decay: QCD radiative correction, Phys. Lett. B 312 (1993) 179 [hep-ph/9302281] [INSPIRE].ADSCrossRefGoogle Scholar
  154. [154]
    M. Inoue, R. Najima, T. Oka and J. Saito, QCD corrections to two photon decay of the Higgs boson and its reverse process, Mod. Phys. Lett. A 9 (1994) 1189 [INSPIRE].ADSCrossRefGoogle Scholar
  155. [155]
    A. Djouadi, J. Kalinowski and P.M. Zerwas, Two and three-body decay modes of SUSY Higgs particles, Z. Phys. C 70 (1996) 435 [hep-ph/9511342] [INSPIRE].Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Raul Costa
    • 1
    • 2
  • Margarete Mühlleitner
    • 3
  • Marco O. P. Sampaio
    • 2
    • 4
  • Rui Santos
    • 1
    • 5
  1. 1.Centro de Física Teórica e Computacional, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
  2. 2.Departamento de Física da Universidade de AveiroAveiroPortugal
  3. 3.Institute for Theoretical PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.CIDMA — Center for Research & Development in Mathematics and ApplicationsAveiroPortugal
  5. 5.ISEL — Instituto Superior de Engenharia de LisboaInstituto Politécnico de LisboaLisboaPortugal

Personalised recommendations