Dual double field theory

  • Eric A. Bergshoeff
  • Olaf Hohm
  • Victor A. Penas
  • Fabio Riccioni
Open Access
Regular Article - Theoretical Physics

Abstract

We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D, D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D, D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for “exotic” dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.

Keywords

D-branes Gauge Symmetry p-branes String Duality 

References

  1. [1]
    C.M. Hull, Strongly coupled gravity and duality, Nucl. Phys. B 583 (2000) 237 [hep-th/0004195] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    X. Bekaert, N. Boulanger and M. Henneaux, Consistent deformations of dual formulations of linearized gravity: a no go result, Phys. Rev. D 67 (2003) 044010 [hep-th/0210278] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    X. Bekaert, N. Boulanger and S. Cnockaert, No self-interaction for two-column massless fields, J. Math. Phys. 46 (2005) 012303 [hep-th/0407102] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  12. [12]
    G. Aldazabal, D. Marques and C. Núñez, Double field theory: a pedagogical review, Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    D.S. Berman and D.C. Thompson, Duality symmetric string and M-theory, Phys. Rept. 566 (2014) 1 [arXiv:1306.2643] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    O. Hohm, D. Lüst and B. Zwiebach, The spacetime of double field theory: review, remarks and outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    E. Eyras, B. Janssen and Y. Lozano, Five-branes, K K monopoles and T duality, Nucl. Phys. B 531 (1998) 275 [hep-th/9806169] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    X. Bekaert and N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D, R): duality and Poincaré lemma, Commun. Math. Phys. 245 (2004) 27 [hep-th/0208058] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    P. de Medeiros and C. Hull, Exotic tensor gauge theory and duality, Commun. Math. Phys. 235 (2003) 255 [hep-th/0208155] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    W. Siegel and B. Zwiebach, OSP(1, 1/2) string field theory with the world sheet metric, Nucl. Phys. B 288 (1987) 332 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    C.M. Hull, Duality in gravity and higher spin gauge fields, JHEP 09 (2001) 027 [hep-th/0107149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    S. Deser, P.K. Townsend and W. Siegel, Higher rank representations of lower spin, Nucl. Phys. B 184 (1981) 333 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    E.A. Bergshoeff and F. Riccioni, D-brane Wess-Zumino terms and U-duality, JHEP 11 (2010) 139 [arXiv:1009.4657] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    E.A. Bergshoeff and F. Riccioni, String solitons and T-duality, JHEP 05 (2011) 131 [arXiv:1102.0934] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    E.A. Bergshoeff, T. Ortín and F. Riccioni, Defect branes, Nucl. Phys. B 856 (2012) 210 [arXiv:1109.4484] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    A. Chatzistavrakidis, F.F. Gautason, G. Moutsopoulos and M. Zagermann, Effective actions of nongeometric five-branes, Phys. Rev. D 89 (2014) 066004 [arXiv:1309.2653] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Chatzistavrakidis and F.F. Gautason, U-dual branes and mixed symmetry tensor fields, Fortsch. Phys. 62 (2014) 743 [arXiv:1404.7635] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    J. de Boer and M. Shigemori, Exotic branes in string theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    D. Geissbuhler, D. Marques, C. Núñez and V. Penas, Exploring double field theory, JHEP 06 (2013) 101 [arXiv:1304.1472] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    D. Geissbuhler, Double field theory and N = 4 gauged supergravity, JHEP 11 (2011) 116 [arXiv:1109.4280] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of double field theory, JHEP 11 (2011) 052 [Erratum ibid. 11 (2011) 109] [arXiv:1109.0290] [INSPIRE].
  31. [31]
    M. Graña and D. Marques, Gauged double field theory, JHEP 04 (2012) 020 [arXiv:1201.2924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    E.A. Bergshoeff, V.A. Penas, F. Riccioni and S. Risoli, Non-geometric fluxes and mixed-symmetry potentials, JHEP 11 (2015) 020 [arXiv:1508.00780] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    N. Boulanger, P.P. Cook and D. Ponomarev, Off-Shell Hodge dualities in linearised gravity and E 11, JHEP 09 (2012) 089 [arXiv:1205.2277] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    N. Boulanger and D. Ponomarev, Frame-like off-shell dualisation for mixed-symmetry gauge fields, J. Phys. A 46 (2013) 214014 [arXiv:1206.2052] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  35. [35]
    N. Boulanger, P. Sundell and P. West, Gauge fields and infinite chains of dualities, JHEP 09 (2015) 192 [arXiv:1502.07909] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    O. Hohm, On factorizations in perturbative quantum gravity, JHEP 04 (2011) 103 [arXiv:1103.0032] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    O. Hohm and D. Marques, Perturbative double field theory on general backgrounds, Phys. Rev. D 93 (2016) 025032 [arXiv:1512.02658] [INSPIRE].ADSGoogle Scholar
  38. [38]
    O. Hohm and H. Samtleben, U-duality covariant gravity, JHEP 09 (2013) 080 [arXiv:1307.0509] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    O. Hohm and H. Samtleben, Exceptional form of D = 11 supergravity, Phys. Rev. Lett. 111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    O. Hohm and H. Samtleben, Exceptional field theory I: E 6(6) covariant form of M-theory and type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].ADSGoogle Scholar
  41. [41]
    O. Hohm and H. Samtleben, Exceptional field theory. II. E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].
  42. [42]
    O. Hohm and H. Samtleben, Exceptional field theory. III. E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].
  43. [43]
    H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai and H. Samtleben, Supersymmetric E 7(7) exceptional field theory, JHEP 09 (2014) 044 [arXiv:1406.3235] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    O. Hohm and H. Samtleben, Consistent Kaluza-Klein truncations via exceptional field theory, JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    N. Boulanger, S. Cnockaert and M. Henneaux, A note on spin s duality, JHEP 06 (2003) 060 [hep-th/0306023] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  48. [48]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-geometric fluxes in supergravity and double field theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    D. Andriot and A. Betz, β-supergravity: a ten-dimensional theory with non-geometric fluxes and its geometric framework, JHEP 12 (2013) 083 [arXiv:1306.4381] [INSPIRE].
  50. [50]
    O. Hohm and B. Zwiebach, On the Riemann tensor in double field theory, JHEP 05 (2012) 126 [arXiv:1112.5296] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    O. Hohm and B. Zwiebach, Towards an invariant geometry of double field theory, J. Math. Phys. 54 (2013) 032303 [arXiv:1212.1736] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    O. Hohm, W. Siegel and B. Zwiebach, Doubled α -geometry, JHEP 02 (2014) 065 [arXiv:1306.2970] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    O. Hohm and B. Zwiebach, Double field theory at order α , JHEP 11 (2014) 075 [arXiv:1407.3803] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    O. Hohm, S.K. Kwak and B. Zwiebach, Unification of type II strings and T-duality, Phys. Rev. Lett. 107 (2011) 171603 [arXiv:1106.5452] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of type II strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    I. Jeon, K. Lee, J.-H. Park and Y. Suh, Stringy unification of type IIA and IIB supergravities under N = 2 D = 10 supersymmetric double field theory, Phys. Lett. B 723 (2013) 245 [arXiv:1210.5078] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    E.A. Bergshoeff and F. Riccioni, Dual doubled geometry, Phys. Lett. B 702 (2011) 281 [arXiv:1106.0212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    E.A. Bergshoeff and F. Riccioni, Branes and wrapping rules, Phys. Lett. B 704 (2011) 367 [arXiv:1108.5067] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Eric A. Bergshoeff
    • 1
  • Olaf Hohm
    • 2
  • Victor A. Penas
    • 1
  • Fabio Riccioni
    • 3
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.Simons Center for Geometry and PhysicsStony Brook UniversityStony BrookU.S.A.
  3. 3.INFN — Sezione di Roma, Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations