Chilly dark sectors and asymmetric reheating

  • Peter Adshead
  • Yanou Cui
  • Jessie Shelton
Open Access
Regular Article - Theoretical Physics


In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.


Cosmology of Theories beyond the SM Thermal Field Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P. Galison and A. Manohar, Two Z’s or Not Two Z’s?, Phys. Lett. B 136 (1984) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [INSPIRE].
  4. [4]
    E.W. Kolb, D. Seckel and M.S. Turner, The Shadow World, Nature 314 (1985) 415 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    H.M. Hodges, Mirror baryons as the dark matter, Phys. Rev. D 47 (1993) 456 [INSPIRE].ADSGoogle Scholar
  6. [6]
    Z.G. Berezhiani, A.D. Dolgov and R.N. Mohapatra, Asymmetric inflationary reheating and the nature of mirror universe, Phys. Lett. B 375 (1996) 26 [hep-ph/9511221] [INSPIRE].
  7. [7]
    J.L. Feng, H. Tu and H.-B. Yu, Thermal Relics in Hidden Sectors, JCAP 10 (2008) 043 [arXiv:0808.2318] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    L. Ackerman, M.R. Buckley, S.M. Carroll and M. Kamionkowski, Dark Matter and Dark Radiation, Phys. Rev. D 79 (2009) 023519 [arXiv:0810.5126] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells, Atomic Dark Matter, JCAP 05 (2010) 021 [arXiv:0909.0753] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Fan, A. Katz, L. Randall and M. Reece, Double-Disk Dark Matter, Phys. Dark Univ. 2 (2013) 139 [arXiv:1303.1521] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    R. Foot and S. Vagnozzi, Dissipative hidden sector dark matter, Phys. Rev. D 91 (2015) 023512 [arXiv:1409.7174] [INSPIRE].ADSGoogle Scholar
  12. [12]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
  13. [13]
    W.L.K. Wu et al., A Guide to Designing Future Ground-based Cosmic Microwave Background Experiments, Astrophys. J. 788 (2014) 138 [arXiv:1402.4108] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    Topical Conveners collaboration, K.N. Abazajian et al., Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure, Astropart. Phys. 63 (2015) 66 [arXiv:1309.5383] [INSPIRE].
  15. [15]
    J. Errard, S.M. Feeney, H.V. Peiris and A.H. Jaffe, Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization, JCAP 03 (2016) 052 [arXiv:1509.06770] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP Dark Matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D. Pappadopulo, J.T. Ruderman and G. Trevisan, Cannibal Dark Matter, arXiv:1602.04219 [INSPIRE].
  18. [18]
    A. Berlin, D. Hooper and G. Krnjaic, PeV-Scale Dark Matter as a Thermal Relic of a Decoupled Sector, arXiv:1602.08490 [INSPIRE].
  19. [19]
    A.E. Faraggi and M. Pospelov, Selfinteracting dark matter from the hidden heterotic string sector, Astropart. Phys. 16 (2002) 451 [hep-ph/0008223] [INSPIRE].
  20. [20]
    N. Bernal and X. Chu, Z 2 SIMP Dark Matter, JCAP 01 (2016) 006 [arXiv:1510.08527] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, Observational Constraints on Decoupled Hidden Sectors, arXiv:1604.02401 [INSPIRE].
  22. [22]
    C. Cheung, G. Elor, L.J. Hall and P. Kumar, Origins of Hidden Sector Dark Matter I: Cosmology, JHEP 03 (2011) 042 [arXiv:1010.0022] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    L. Randall, J. Scholtz and J. Unwin, Flooded Dark Matter and S Level Rise, JHEP 03 (2016) 011 [arXiv:1509.08477] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Dvali, A. Gruzinov and M. Zaldarriaga, A new mechanism for generating density perturbations from inflation, Phys. Rev. D 69 (2004) 023505 [astro-ph/0303591] [INSPIRE].
  25. [25]
    J.R. Bond, A.V. Frolov, Z. Huang and L. Kofman, Non-Gaussian Spikes from Chaotic Billiards in Inflation Preheating, Phys. Rev. Lett. 103 (2009) 071301 [arXiv:0903.3407] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Easther and E.A. Lim, Stochastic gravitational wave production after inflation, JCAP 04 (2006) 010 [astro-ph/0601617] [INSPIRE].
  27. [27]
    P.P. Kronberg, Extragalactic magnetic fields, Rept. Prog. Phys. 57 (1994) 325 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Khlopov, B.A. Malomed and I.B. Zeldovich, Gravitational instability of scalar fields and formation of primordial black holes, Mon. Not. Roy. Astron. Soc. 215 (1985) 575 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M.A. Amin, M.P. Hertzberg, D.I. Kaiser and J. Karouby, Nonperturbative Dynamics Of Reheating After Inflation: A Review, Int. J. Mod. Phys. D 24 (2014) 1530003 [arXiv:1410.3808] [INSPIRE].ADSzbMATHGoogle Scholar
  30. [30]
    J. Martin and C. Ringeval, First CMB Constraints on the Inflationary Reheating Temperature, Phys. Rev. D 82 (2010) 023511 [arXiv:1004.5525] [INSPIRE].ADSGoogle Scholar
  31. [31]
    P. Adshead, R. Easther, J. Pritchard and A. Loeb, Inflation and the Scale Dependent Spectral Index: Prospects and Strategies, JCAP 02 (2011) 021 [arXiv:1007.3748] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Martin, C. Ringeval and V. Vennin, Observing Inflationary Reheating, Phys. Rev. Lett. 114 (2015) 081303 [arXiv:1410.7958] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    L. Dai, M. Kamionkowski and J. Wang, Reheating constraints to inflationary models, Phys. Rev. Lett. 113 (2014) 041302 [arXiv:1404.6704] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J.L. Cook, E. Dimastrogiovanni, D.A. Easson and L.M. Krauss, Reheating predictions in single field inflation, JCAP 04 (2015) 047 [arXiv:1502.04673] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    V. Domcke and J. Heisig, Constraints on the reheating temperature from sizable tensor modes, Phys. Rev. D 92 (2015) 103515 [arXiv:1504.00345] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A.D. Dolgov and D.P. Kirilova, On particle creation by a time dependent scalar field, Sov. J. Nucl. Phys. 51 (1990) 172 [INSPIRE].Google Scholar
  37. [37]
    J.H. Traschen and R.H. Brandenberger, Particle Production During Out-of-equilibrium Phase Transitions, Phys. Rev. D 42 (1990) 2491 [INSPIRE].ADSGoogle Scholar
  38. [38]
    L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett. 73 (1994) 3195 [hep-th/9405187] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Y. Shtanov, J.H. Traschen and R.H. Brandenberger, Universe reheating after inflation, Phys. Rev. D 51 (1995) 5438 [hep-ph/9407247] [INSPIRE].
  40. [40]
    L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].
  41. [41]
    D.J.H. Chung, E.W. Kolb and A. Riotto, Production of massive particles during reheating, Phys. Rev. D 60 (1999) 063504 [hep-ph/9809453] [INSPIRE].
  42. [42]
    G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [INSPIRE].
  43. [43]
    E.W. Kolb, A. Notari and A. Riotto, On the reheating stage after inflation, Phys. Rev. D 68 (2003) 123505 [hep-ph/0307241] [INSPIRE].
  44. [44]
    M. Drewes, What can the CMB tell about the microphysics of cosmic reheating?, JCAP 03 (2016) 013 [arXiv:1511.03280] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    C. Brust, D.E. Kaplan and M.T. Walters, New Light Species and the CMB, JHEP 12 (2013) 058 [arXiv:1303.5379] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M.A. Buen-Abad, G. Marques-Tavares and M. Schmaltz, Non-Abelian dark matter and dark radiation, Phys. Rev. D 92 (2015) 023531 [arXiv:1505.03542] [INSPIRE].ADSGoogle Scholar
  47. [47]
    Z. Chacko, Y. Cui, S. Hong and T. Okui, Hidden dark matter sector, dark radiation and the CMB, Phys. Rev. D 92 (2015) 055033 [arXiv:1505.04192] [INSPIRE].ADSGoogle Scholar
  48. [48]
    D. Baumann, D. Green, J. Meyers and B. Wallisch, Phases of New Physics in the CMB, JCAP 01 (2016) 007 [arXiv:1508.06342] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    L.F. Abbott, E. Farhi and M.B. Wise, Particle Production in the New Inflationary Cosmology, Phys. Lett. B 117 (1982) 29 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A. Albrecht, P.J. Steinhardt, M.S. Turner and F. Wilczek, Reheating an Inflationary Universe, Phys. Rev. Lett. 48 (1982) 1437 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A.D. Dolgov and A.D. Linde, Baryon Asymmetry in Inflationary Universe, Phys. Lett. B 116 (1982) 329 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Reece and T. Roxlo, Nonthermal Production of Dark Radiation and Dark Matter, arXiv:1511.06768 [INSPIRE].
  53. [53]
    M.S. Turner, Coherent Scalar Field Oscillations in an Expanding Universe, Phys. Rev. D 28 (1983) 1243 [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    J. Yokoyama, Can oscillating scalar fields decay into particles with a large thermal mass?, Phys. Lett. B 635 (2006) 66 [hep-ph/0510091] [INSPIRE].
  55. [55]
    M. Drewes, On the Role of Quasiparticles and thermal Masses in Nonequilibrium Processes in a Plasma, arXiv:1012.5380 [INSPIRE].
  56. [56]
    M. Drewes and J.U. Kang, The Kinematics of Cosmic Reheating, Nucl. Phys. B 875 (2013) 315 [Erratum ibid. B 888 (2014) 284] [arXiv:1305.0267] [INSPIRE].
  57. [57]
    D.J.H. Chung, Classical inflation field induced creation of superheavy dark matter, Phys. Rev. D 67 (2003) 083514 [hep-ph/9809489] [INSPIRE].
  58. [58]
    G.F. Giudice, M. Peloso, A. Riotto and I. Tkachev, Production of massive fermions at preheating and leptogenesis, JHEP 08 (1999) 014 [hep-ph/9905242] [INSPIRE].
  59. [59]
    R. Allahverdi and M. Drees, Thermalization after inflation and production of massive stable particles, Phys. Rev. D 66 (2002) 063513 [hep-ph/0205246] [INSPIRE].
  60. [60]
    P.S. Bhupal Dev, A. Mazumdar and S. Qutub, Constraining Non-thermal and Thermal properties of Dark Matter, Front. in Phys. 2 (2014) 26 [arXiv:1311.5297] [INSPIRE].ADSGoogle Scholar
  61. [61]
    K. Enqvist and K.J. Eskola, Thermalization in the Early Universe, Mod. Phys. Lett. A 5 (1990) 1919 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Davidson and S. Sarkar, Thermalization after inflation, JHEP 11 (2000) 012 [hep-ph/0009078] [INSPIRE].
  63. [63]
    W.R. Yueh and J.R. Buchler, Scattering functions for neutrino transport, Astrophys. Space Sci. 39 (1976) 429.ADSCrossRefGoogle Scholar
  64. [64]
    S. Hannestad and J. Madsen, Neutrino decoupling in the early universe, Phys. Rev. D 52 (1995) 1764 [astro-ph/9506015] [INSPIRE].
  65. [65]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    T. Hahn, CUBA: A library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].
  67. [67]
    B.A. Bassett, S. Tsujikawa and D. Wands, Inflation dynamics and reheating, Rev. Mod. Phys. 78 (2006) 537 [astro-ph/0507632] [INSPIRE].
  68. [68]
    R. Allahverdi, R. Brandenberger, F.-Y. Cyr-Racine and A. Mazumdar, Reheating in Inflationary Cosmology: Theory and Applications, Ann. Rev. Nucl. Part. Sci. 60 (2010) 27 [arXiv:1001.2600].ADSCrossRefGoogle Scholar
  69. [69]
    J.F. Dufaux, G.N. Felder, L. Kofman, M. Peloso and D. Podolsky, Preheating with trilinear interactions: Tachyonic resonance, JCAP 07 (2006) 006 [hep-ph/0602144] [INSPIRE].
  70. [70]
    C. Armendariz-Picon, M. Trodden and E.J. West, Preheating in derivatively-coupled inflation models, JCAP 04 (2008) 036 [arXiv:0707.2177] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    P. Adshead, J.T. Giblin, T.R. Scully and E.I. Sfakianakis, Gauge-preheating and the end of axion inflation, JCAP 12 (2015) 034 [arXiv:1502.06506] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    S.M. Carroll and G.B. Field, The Einstein equivalence principle and the polarization of radio galaxies, Phys. Rev. D 43 (1991) 3789 [INSPIRE].ADSGoogle Scholar
  73. [73]
    W.D. Garretson, G.B. Field and S.M. Carroll, Primordial magnetic fields from pseudoGoldstone bosons, Phys. Rev. D 46 (1992) 5346 [hep-ph/9209238] [INSPIRE].
  74. [74]
    N. Barnaby, R. Namba and M. Peloso, Phenomenology of a Pseudo-Scalar Inflaton: Naturally Large NonGaussianity, JCAP 04 (2011) 009 [arXiv:1102.4333] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    N. Barnaby, E. Pajer and M. Peloso, Gauge Field Production in Axion Inflation: Consequences for Monodromy, non-Gaussianity in the CMB and Gravitational Waves at Interferometers, Phys. Rev. D 85 (2012) 023525 [arXiv:1110.3327] [INSPIRE].ADSGoogle Scholar
  76. [76]
    A. Linde, S. Mooij and E. Pajer, Gauge field production in supergravity inflation: Local non-Gaussianity and primordial black holes, Phys. Rev. D 87 (2013) 103506 [arXiv:1212.1693] [INSPIRE].ADSGoogle Scholar
  77. [77]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, arXiv:1502.01592 [INSPIRE].
  78. [78]
    BICEP2 and Keck Array collaborations, P.A.R. Ade et al., Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band, Phys. Rev. Lett. 116 (2016) 031302 [arXiv:1510.09217] [INSPIRE].
  79. [79]
    P.B. Greene and L. Kofman, On the theory of fermionic preheating, Phys. Rev. D 62 (2000) 123516 [hep-ph/0003018] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaU.S.A.
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  3. 3.Maryland Center for Fundamental PhysicsUniversity of MarylandCollege ParkU.S.A.

Personalised recommendations