Ambitwistor pure spinor string in a type II supergravity background

Open Access
Regular Article - Theoretical Physics

Abstract

We construct the ambitwistor pure spinor string in a general type II supergravity background in the semi-classical regime. Almost all supergravity constraints are obtained from nilpotency of the BRST charge and further consistency conditions from additional world-sheet the case of AdS5 × S 5 background.

Keywords

Superstrings and Heterotic Strings Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    N. Berkovits, An alternative string theory in twistor space for N = 4 super Yang-Mills, Phys. Rev. Lett. 93 (2004) 011601 [hep-th/0402045] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].
  4. [4]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar
  5. [5]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and Gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D.J. Gross and P.F. Mende, String Theory Beyond the Planck Scale, Nucl. Phys. B 303 (1988) 407 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    D.J. Gross and P.F. Mende, The High-Energy Behavior of String Scattering Amplitudes, Phys. Lett. B 197 (1987) 129 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    N. Berkovits, Infinite Tension Limit of the Pure Spinor Superstring, JHEP 03 (2014) 017 [arXiv:1311.4156] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    T. Adamo, E. Casali and D. Skinner, A Worldsheet Theory for Supergravity, JHEP 02 (2015) 116 [arXiv:1409.5656] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    N. Berkovits and P.S. Howe, Ten-dimensional supergravity constraints from the pure spinor formalism for the superstring, Nucl. Phys. B 635 (2002) 75 [hep-th/0112160] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    O. Chand´ıa, A note on the classical BRST symmetry of the pure spinor string in a curved background, JHEP 07 (2006) 019 [hep-th/0604115] [INSPIRE].
  14. [14]
    O. Chand´ıa and B.C. Vallilo, Non-minimal fields of the pure spinor string in general curved backgrounds, JHEP 02 (2015) 092 [arXiv:1412.1030] [INSPIRE].
  15. [15]
    O.A. Bedoya and O. Chand´ıa, One-loop Conformal Invariance of the Type II Pure Spinor Superstring in a Curved Background, JHEP 01 (2007) 042 [hep-th/0609161] [INSPIRE].
  16. [16]
    A. Mikhailov, Symmetries of massless vertex operators in AdS5 × S 5, J. Geom. Phys. 62 (2012) 479 [arXiv:0903.5022] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    N. Berkovits, private communication.Google Scholar
  18. [18]
    O. Chand´ıa, A. Mikhailov and B.C. Vallilo, A construction of integrated vertex operator in the pure spinor σ-model in AdS5 × S 5, JHEP 11 (2013) 124 [arXiv:1306.0145] [INSPIRE].
  19. [19]
    T. Adamo, N. Berkovits and E. Casali, private communication.Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo IbáñezFacultad de Ingenier´ıa y Ciencias, Universidad Adolfo IbáñezPeñalolénChile
  2. 2.Departamento de Ciencias F´ısicas, Facultad de Ciencias ExactasSantiagoChile

Personalised recommendations