Supersymmetric AdS5 solutions of massive IIA supergravity

  • Fabio Apruzzi
  • Marco Fazzi
  • Achilleas Passias
  • Alessandro Tomasiello
Open Access
Regular Article - Theoretical Physics


Motivated by a recently found class of AdS7 solutions, we classify AdS5 solutions in massive IIA, finding infinitely many new analytical examples. We reduce the general problem to a set of PDEs, determining the local internal metric, which is a fibration over a surface. Under a certain simplifying assumption, we are then able to analytically solve the PDEs and give a complete list of all solutions. Among these, one class is new and regular. These spaces can be related to the AdS7 solutions via a simple universal map for the metric, dilaton and fluxes. The natural interpretation of this map is that the dual CFT6 and CFT4 are related by twisted compactification on a Riemann surface Σ g . The ratio of their free energy coefficients is proportional to the Euler characteristic of Σ g . As a byproduct, we also find the analytic expression for the AdS7 solutions, which were previously known only numerically. We determine the free energy for simple examples: it is a simple cubic function of the flux integers.


Flux compactifications D-branes AdS-CFT Correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS 5 solutions of type IIB supergravity, Class. Quant. Grav. 23 (2006) 4693 [hep-th/0510125] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    K. Pilch and N.P. Warner, A new supersymmetric compactification of chiral IIB supergravity, Phys. Lett. B 487 (2000) 22 [hep-th/0002192] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS 5 solutions of M-theory, Class. Quant. Grav. 21 (2004) 4335 [hep-th/0402153] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    D. Gaiotto and J. Maldacena, The Gravity duals of \( \mathcal{N}=2 \) superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    I. Bah, C. Beem, N. Bobev and B. Wecht, Four-Dimensional SCFTs from M5-Branes, JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS 7 solutions of type-II supergravity, JHEP 04 (2014) 064 [arXiv:1309.2949] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Blaback, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, The problematic backreaction of SUSY-breaking branes, JHEP 08 (2011) 105 [arXiv:1105.4879] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    F.F. Gautason, D. Junghans and M. Zagermann, Cosmological Constant, Near Brane Behavior and Singularities, JHEP 09 (2013) 123 [arXiv:1301.5647] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J. Blaback, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, (Anti-)Brane backreaction beyond perturbation theory, JHEP 02 (2012) 025 [arXiv:1111.2605] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    D. Junghans, D. Schmidt and M. Zagermann, Curvature-induced Resolution of Anti-brane Singularities, JHEP 1410 (2014) 34 [arXiv:1402.6040] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    D. Gaiotto and A. Tomasiello, Holography for (1, 0) theories in six dimensions, JHEP 12 (2014) 003 [arXiv:1404.0711] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    I. Brunner and A. Karch, Branes at orbifolds versus Hanany Witten in six-dimensions, JHEP 03 (1998) 003 [hep-th/9712143] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    K.A. Intriligator, RG fixed points in six-dimensions via branes at orbifold singularities, Nucl. Phys. B 496 (1997) 177 [hep-th/9702038] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    K.A. Intriligator, New string theories in six-dimensions via branes at orbifold singularities, Adv. Theor. Math. Phys. 1 (1998) 271 [hep-th/9708117] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J.J. Heckman, D.R. Morrison and C. Vafa, On the Classification of 6D SCFTs and Generalized ADE Orbifolds, JHEP 05 (2014) 028 [arXiv:1312.5746] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  20. [20]
    A. Rota and A. Tomasiello, AdS 4 compactifications of AdS 7 solutions in type-II supergravity, arXiv:1502.06622 [INSPIRE].
  21. [21]
    R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge theory, hep-th/0003136 [INSPIRE].
  23. [23]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of \( \mathcal{N}=1 \) vacua, JHEP 11 (2005) 020 [hep-th/0505212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    M. Gabella, J.P. Gauntlett, E. Palti, J. Sparks and D. Waldram, AdS 5 Solutions of Type IIB Supergravity and Generalized Complex Geometry, Commun. Math. Phys. 299 (2010) 365 [arXiv:0906.4109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    M.T. Anderson, C. Beem, N. Bobev and L. Rastelli, Holographic Uniformization, Commun. Math. Phys. 318 (2013) 429 [arXiv:1109.3724] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT Dual Pairs from M5-Branes on Riemann Surfaces, Phys. Rev. D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE].ADSGoogle Scholar
  27. [27]
    G. Itsios, C. Núñez, K. Sfetsos and D.C. Thompson, On Non-Abelian T-duality and new \( \mathcal{N}=1 \) backgrounds, Phys. Lett. B 721 (2013) 342 [arXiv:1212.4840] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    O. Aharony, L. Berdichevsky and M. Berkooz, 4d \( \mathcal{N}=2 \) superconformal linear quivers with type IIA duals, JHEP 08 (2012) 131 [arXiv:1206.5916] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    D. Gaiotto, \( \mathcal{N}=2 \) dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Tomasiello, Reformulating supersymmetry with a generalized Dolbeault operator, JHEP 02 (2008) 010 [arXiv:0704.2613] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    D. Lüst and D. Tsimpis, Supersymmetric AdS 4 compactifications of IIA supergravity, JHEP 02 (2005) 027 [hep-th/0412250] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    K. Sfetsos and D.C. Thompson, On non-abelian T-dual geometries with Ramond fluxes, Nucl. Phys. B 846 (2011) 21 [arXiv:1012.1320] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    K. Sfetsos and D.C. Thompson, New \( \mathcal{N}=1 \) supersymmetric AdS 5 backgrounds in Type IIA supergravity, JHEP 11 (2014) 006 [arXiv:1408.6545] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    R.A. Reid-Edwards and B. Stefanski Jr., On Type IIA geometries dual to \( \mathcal{N}=2 \) SCFTs, Nucl. Phys. B 849 (2011) 549 [arXiv:1011.0216] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    I. Bah, Quarter-BPS AdS 5 solutions in M-theory with a T 2 bundle over a Riemann surface, JHEP 08 (2013) 137 [arXiv:1304.4954] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    I. Bah, AdS 5 solutions from M5-branes on Riemann surface and D6-branes sources, arXiv:1501.06072 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Fabio Apruzzi
    • 1
  • Marco Fazzi
    • 2
    • 3
  • Achilleas Passias
    • 4
    • 5
  • Alessandro Tomasiello
    • 4
    • 5
  1. 1.Institut für Theoretische PhysikLeibniz Universität HannoverHannoverGermany
  2. 2.Physique Théorique et MathématiqueUniversité Libre de BruxellesBruxellesBelgium
  3. 3.International Solvay InstitutesBruxellesBelgium
  4. 4.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  5. 5.INFN, sezione di Milano-Bicocca,MilanoItaly

Personalised recommendations