Uniform gauge for D1-brane in general background

Open Access
Regular Article - Theoretical Physics

Abstract

We construct uniform gauge D1-brane action in general background. We also discuss how this action transforms under double Wick rotation and determine transformation properties of background fields.

Keywords

D-branes AdS-CFT Correspondence 

References

  1. [1]
    G. Arutyunov and S. Frolov, Foundations of the AdS 5 × S 5 superstring: I, J. Phys. A 42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].ADSMATHGoogle Scholar
  2. [2]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    J. Klusoň, Integrability of D1-brane on group manifold, JHEP 09 (2014) 159 [arXiv:1407.7665] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    G. Arutyunov, R. Borsato and S. Frolov, S-matrix for strings on η-deformed AdS 5 × S 5, JHEP 04 (2014) 002 [arXiv:1312.3542] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The exact spectrum and mirror duality of the (AdS 5 × S 5)η superstring, Theor. Math. Phys. 182 (2015) 23 [Teor. Mat. Fiz. 182 (2014) 28] [arXiv:1403.6104] [INSPIRE].
  6. [6]
    G. Arutyunov and S.J. van Tongeren, AdS 5 × S 5 mirror model as a string σ-model, Phys. Rev. Lett. 113 (2014) 261605 [arXiv:1406.2304] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Arutyunov and S. Frolov, On string S-matrix, bound states and TBA, JHEP 12 (2007) 024 [arXiv:0710.1568] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    J. Polchinski, Dirichlet branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    G. Arutyunov and S. Frolov, String hypothesis for the AdS 5 × S 5 mirror, JHEP 03 (2009) 152 [arXiv:0901.1417] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Arutyunov and S. Frolov, Thermodynamic Bethe Ansatz for the AdS 5 × S 5 mirror model, JHEP 05 (2009) 068 [arXiv:0903.0141] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    B. Basso, A. Sever and P. Vieira, Spacetime and flux tube S-matrices at finite coupling for \( \mathcal{N}=4 \) supersymmetric Yang-Mills theory, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix II. Extracting and matching data, JHEP 01 (2014) 008 [arXiv:1306.2058] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux-tube S-matrix III. The two-particle contributions, JHEP 08 (2014) 085 [arXiv:1402.3307] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS 5 × S 5 superstring action, Phys. Rev. Lett. 112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Arutyunov and S.J. van Tongeren, Double Wick rotating Green-Schwarz strings, JHEP 05 (2015) 027 [arXiv:1412.5137] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    O. Lunin, R. Roiban and A.A. Tseytlin, Supergravity backgrounds for deformations of AdS n × S n supercoset string models, Nucl. Phys. B 891 (2015) 106 [arXiv:1411.1066] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    F. Delduc, M. Magro and B. Vicedo, Derivation of the action and symmetries of the q-deformed AdS 5 × S 5 superstring, JHEP 10 (2014) 132 [arXiv:1406.6286] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    B. Hoare, R. Roiban and A.A. Tseytlin, On deformations of AdS n × S n supercosets, JHEP 06 (2014) 002 [arXiv:1403.5517] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S.J. van Tongeren, Integrability of the AdS 5 × S 5 superstring and its deformations, J. Phys. A 47 (2014) 433001 [arXiv:1310.4854] [INSPIRE].MATHGoogle Scholar
  20. [20]
    J. Simon, Brane effective actions, κ-symmetry and applications, Living Rev. Rel. 15 (2012) 3 [arXiv:1110.2422] [INSPIRE].CrossRefMATHGoogle Scholar
  21. [21]
    M. Kruczenski, A.V. Ryzhov and A.A. Tseytlin, Large spin limit of AdS 5 × S 5 string theory and low-energy expansion of ferromagnetic spin chains, Nucl. Phys. B 692 (2004) 3 [hep-th/0403120] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    G. Arutyunov and S. Frolov, Integrable Hamiltonian for classical strings on AdS 5 × S 5, JHEP 02 (2005) 059 [hep-th/0411089] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Theoretical Physics and Astrophysics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations