Advertisement

Entanglement entropy production in gravitational collapse: covariant regularization and solvable models

  • Eugenio Bianchi
  • Tommaso De Lorenzo
  • Matteo Smerlak
Open Access
Regular Article - Theoretical Physics

Abstract

We study the dynamics of vacuum entanglement in the process of gravitational collapse and subsequent black hole evaporation. In the first part of the paper, we introduce a covariant regularization of entanglement entropy tailored to curved spacetimes; this regularization allows us to propose precise definitions for the concepts of black hole “exterior entropy” and “radiation entropy.” For a Vaidya model of collapse we find results consistent with the standard thermodynamic properties of Hawking radiation. In the second part of the paper, we compute the vacuum entanglement entropy of various spherically-symmetric spacetimes of interest, including the nonsingular black hole model of Bardeen, Hayward, Frolov and Rovelli-Vidotto and the “black hole fireworks” model of Haggard-Rovelli. We discuss specifically the role of event and trapping horizons in connection with the behavior of the radiation entropy at future null infinity. We observe in particular that (i) in the presence of an event horizon the radiation entropy diverges at the end of the evaporation process, (ii) in models of nonsingular evaporation (with a trapped region but no event horizon) the generalized second law holds only at early times and is violated in the “purifying” phase, (iii) at late times the radiation entropy can become negative (i.e. the radiation can be less correlated than the vacuum) before going back to zero leading to an up-down-up behavior for the Page curve of a unitarily evaporating black hole.

Keywords

Models of Quantum Gravity Black Holes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R.D. Sorkin, 1983 paper on entanglement entropy:On the entropy of the vacuum outside a horizon”, arXiv:1402.3589 [INSPIRE].
  2. [2]
    L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black holes, Phys. Rev. D 34 (1986) 373.ADSMathSciNetMATHGoogle Scholar
  3. [3]
    M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    R.D. Sorkin, Expressing entropy globally in terms of (4D) field-correlations, J. Phys. Conf. Ser. 484 (2014) 012004 [arXiv:1205.2953] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    E. Bianchi and R.C. Myers, On the architecture of spacetime geometry, Class. Quant. Grav. 31 (2014) 214002 [arXiv:1212.5183] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    R. Haag and R. Haag, Local quantum physics: fields, particles, algebras, volume 2, Springer, Germany (1996).CrossRefMATHGoogle Scholar
  8. [8]
    H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions, JHEP 03 (2009) 048 [arXiv:0812.1773] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    R. Werner, Local preparability of states and the split property in quantum field theory, Lett. Math. Phys. 13 (1987) 325.ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    J. Yngvason, Localization and entanglement in relativistic quantum physics, Lect. Notes Phys. 899 (2015) 325 [arXiv:1401.2652] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    N. Birrell and P. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1982).CrossRefMATHGoogle Scholar
  12. [12]
    A. Fabbri and J. Navarro-Salas, Modeling black hole evaporation, Imperial College Press, U.K. (2005).CrossRefMATHGoogle Scholar
  13. [13]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    R.M. Wald, General Relativity, Chicago University Press, Chicago U.S.A. (1984).CrossRefMATHGoogle Scholar
  15. [15]
    H. Araki, Relative entropy of states of von Neumann algebras, Publ. Res. Inst. Math. Sci. 11 (1975) 809.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    M. Ohya, Quantum entropy and its use, Springer, Germany (2004).MATHGoogle Scholar
  17. [17]
    V. Vedral, The role of relative entropy in quantum information theory, Rev. Mod. Phys. 74 (2002) 197 [quant-ph/0102094].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    H. Casini, M. Huerta and J.A. Rosabal, Remarks on entanglement entropy for gauge fields, Phys. Rev. D 89 (2014) 085012 [arXiv:1312.1183] [INSPIRE].ADSGoogle Scholar
  19. [19]
    C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].MATHGoogle Scholar
  21. [21]
    H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].MathSciNetMATHGoogle Scholar
  22. [22]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013].MathSciNetMATHGoogle Scholar
  23. [23]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech. 0911 (2009) P11001 [arXiv:0905.2069] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  24. [24]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    D. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743 [hep-th/9306083].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    T.A. Roman and P.G. Bergmann, Stellar collapse without singularities?, Phys. Rev. D 28 (1983) 1265 [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    P.C.W. Davies, S.A. Fulling and W.G. Unruh, Energy momentum tensor near an evaporating black hole, Phys. Rev. D 13 (1976) 2720 [INSPIRE].ADSGoogle Scholar
  28. [28]
    P.C.W. Davies and S.A. Fulling, Radiation from a moving mirror in two-dimensional space-time conformal anomaly, Proc. Roy. Soc. Lond. A 348 (1976) 393 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  29. [29]
    P.C.W. Davies and S.A. Fulling, Radiation from moving mirrors and from black holes, Proc. Roy. Soc. Lond. A 356 (1977) 237 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R.D. Sorkin, The statistical mechanics of black hole thermodynamics, gr-qc/9705006 [INSPIRE].
  31. [31]
    A.C. Wall, Ten proofs of the generalized second law, JHEP 06 (2009) 021 [arXiv:0901.3865] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A.C. Wall, A proof of the generalized second law for rapidly-evolving Rindler horizons, Phys. Rev. D 82 (2010) 124019 [arXiv:1007.1493] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A.C. Wall, A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices, Phys. Rev. D 85 (2012) 104049 [arXiv:1105.3445] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  35. [35]
    E. Bianchi and M. Smerlak, Entanglement entropy and negative energy in two dimensions, Phys. Rev. D 90 (2014) 041904 [arXiv:1404.0602] [INSPIRE].ADSGoogle Scholar
  36. [36]
    E. Bianchi and M. Smerlak, Last gasp of a black hole: unitary evaporation implies non-monotonic mass loss, Gen. Rel. Grav. 46 (2014) 1809 [arXiv:1405.5235] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    W.H. Zurek, Entropy evaporated by a black hole, Phys. Rev. Lett. 49 (1982) 1683.ADSCrossRefGoogle Scholar
  38. [38]
    C.R. Stephens, G. t. Hooft and B.F. Whiting, Black hole evaporation without information loss, Class. Quant. Grav. 11 (1999) 621 [gr-qc/9310006].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    A. Paranjape and T. Padmanabhan, Radiation from collapsing shells, semiclassical backreaction, and black hole formation, Phys. Rev. D 80 (2009) 044011 [arXiv:0906.1768] [INSPIRE].ADSGoogle Scholar
  40. [40]
    P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    L. Susskind, Addendum to fast scramblers, arXiv:1101.6048 [INSPIRE].
  43. [43]
    W.A. Hiscock, Models of evaporating black holes, Phys. Rev. D 23 (1981) 2813 [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    W.A. Hiscock, Models of evaporating black holes. II. Effects of the outgoing created radiation, Phys. Rev. D 23 (1981) 2823 [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    S.W. Hawking and J.M. Stewart, Naked and thunderbolt singularities in black hole evaporation, Nucl. Phys. B 400 (1993) 393 [hep-th/9207105] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    J. Bardeen, Proceedings of GR5, Tbilisi, U.S.S.R. (1968).Google Scholar
  47. [47]
    V.P. Frolov and G. Vilkovisky, Quantum gravity removes classical singularities and shortens the life of black holes, ICTP preprint (1979) 0455.Google Scholar
  48. [48]
    V.P. Frolov and G.A. Vilkovisky, Spherically symmetric collapse in quantum gravity, Phys. Lett. B 106 (1981) 307 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    C.R. Stephens, G. ’t Hooft and B.F. Whiting, Black hole evaporation without information loss, Class. Quant. Grav. 11 (1994) 621 [gr-qc/9310006] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    A. Ashtekar and M. Bojowald, Black hole evaporation: a paradigm, Class. Quant. Grav. 22 (2005) 3349 [gr-qc/0504029] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    A. Ashtekar, V. Taveras and M. Varadarajan, Information is not lost in the evaporation of 2-dimensional black holes, Phys. Rev. Lett. 100 (2008) 211302 [arXiv:0801.1811] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    A. Bonanno and M. Reuter, Spacetime structure of an evaporating black hole in quantum gravity, Phys. Rev. D 73 (2006) 083005 [hep-th/0602159] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    S. Hossenfelder, L. Modesto and I. Premont-Schwarz, A model for non-singular black hole collapse and evaporation, Phys. Rev. D 81 (2010) 044036 [arXiv:0912.1823] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S.A. Hayward, Formation and evaporation of regular black holes, Phys. Rev. Lett. 96 (2006) 031103 [gr-qc/0506126] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    C. Rovelli and F. Vidotto, Planck stars, Int. J. Mod. Phys. D 23 (2014) 1442026 [arXiv:1401.6562] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    V.P. Frolov, Information loss problem and ablack holemodel with a closed apparent horizon, JHEP 05 (2014) 049 [arXiv:1402.5446] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J.M. Bardeen, Black hole evaporation without an event horizon, arXiv:1406.4098 [INSPIRE].
  58. [58]
    R.D. Carlitz and R.S. Willey, Lifetime of a black hole, Phys. Rev. D 36 (1987) 2336.ADSMathSciNetGoogle Scholar
  59. [59]
    Y. Aharonov, A. Casher and S. Nussinov, The unitarity puzzle and Planck mass stable particles, Phys. Lett. B 191 (1987) 51 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    J. Preskill, Do black holes destroy information?, hep-th/9209058 [INSPIRE].
  61. [61]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    T.M. Fiola, J. Preskill, A. Strominger and S.P. Trivedi, Black hole thermodynamics and information loss in two-dimensions, Phys. Rev. D 50 (1994) 3987 [hep-th/9403137] [INSPIRE].ADSMathSciNetGoogle Scholar
  63. [63]
    A.C. Wall, Testing the generalized second law in 1 + 1 dimensional conformal vacua: an argument for the causal horizon, Phys. Rev. D 85 (2012) 024015 [arXiv:1105.3520] [INSPIRE].ADSGoogle Scholar
  64. [64]
    H.M. Haggard and C. Rovelli, Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunneling, arXiv:1407.0989 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Eugenio Bianchi
    • 1
  • Tommaso De Lorenzo
    • 2
  • Matteo Smerlak
    • 3
  1. 1.Institute for Gravitation and the Cosmos & Physics DepartmentPenn StateUniversity ParkUSA
  2. 2.Università di Pisa, Dipartimento di Fisica “Enrico Fermi”PisaItaly
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations