Advertisement

Fully covering the MSSM Higgs sector at the LHC

  • A. Djouadi
  • L. Maiani
  • A. Polosa
  • J. QuevillonEmail author
  • V. Riquer
Open Access
Regular Article - Theoretical Physics

Abstract

In the context of the Minimal Supersymmetric extension of the Standard Model (MSSM), we reanalyze the search for the heavier CP-even H and CP-odd A neutral Higgs bosons at the LHC in their production in the gluon-fusion mechanism and their decays into gauge and lighter h bosons and into top quark pairs. We show that only when considering these processes, that one can fully cover the entire parameter space of the Higgs sector of the model. Indeed, they are sensitive to the low tan β and high Higgs mass ranges, complementing the traditional searches for high mass resonances decaying into τ -lepton pairs which are instead sensitive to the large and moderate tan β regions. The complementarity of the various channels in the probing of the complete [tan β, M A ] MSSM parameter space at the previous and upcoming phases of the LHC is illustrated in a recently proposed simple and model independent approach for the Higgs sector, the hMSSM, that we also refine in this paper.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles, World Scientific, (2005).Google Scholar
  2. [2]
    H. Baer and X. Tata, Weak scale Supersymmetry: from superfields to scattering events, Cambridge University Press, (2006).Google Scholar
  3. [3]
    S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 21 (2010) 1 [hep-ph/9709356] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  4. [4]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  6. [6]
    J. Gunion, H. Haber, G. Kane and S. Dawson, The Higgs Hunters Guide, Reading, (1990).Google Scholar
  7. [7]
    M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  8. [8]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Carena and H.E. Haber, Higgs boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [arXiv:1307.1427] [INSPIRE].ADSGoogle Scholar
  12. [12]
    ATLAS collaboration, Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2014-009 (2014).
  13. [13]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [CMS-PAS-HIG-14-009] [arXiv:1412.8662] [INSPIRE].ADSGoogle Scholar
  14. [14]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Carena, J.R. Espinosa, M. Quirós and C.E.M. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [INSPIRE].Google Scholar
  19. [19]
    S. Heinemeyer, W. Hollik and G. Weiglein, QCD corrections to the masses of the neutral CP-even Higgs bosons in the MSSM, Phys. Rev. D 58 (1998) 091701 [hep-ph/9803277] [INSPIRE].ADSzbMATHGoogle Scholar
  20. [20]
    S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].ADSzbMATHGoogle Scholar
  21. [21]
    G. Degrassi, P. Slavich and F. Zwirner, On the neutral Higgs boson masses in the MSSM for arbitrary stop mixing, Nucl. Phys. B 611 (2001) 403 [hep-ph/0105096] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the \( \mathcal{O}\left({\alpha}_t^2\right) \) two loop corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 631 (2002) 195 [hep-ph/0112177] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two loop sbottom corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 643 (2002) 79 [hep-ph/0206101] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S.P. Martin, Three-loop corrections to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 75 (2007) 055005 [hep-ph/0701051] [INSPIRE].ADSGoogle Scholar
  25. [25]
    P. Kant, R.V. Harlander, L. Mihaila and M. Steinhauser, Light MSSM Higgs boson mass to three-loop accuracy, JHEP 08 (2010) 104 [arXiv:1005.5709] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  26. [26]
    A. Djouadi, L. Maiani, G. Moreau, A. Polosa, J. Quevillon and V. Riquer, The post-Higgs MSSM scenario: Habemus MSSM?, Eur. Phys. J. C 73 (2013) 2650 [arXiv:1307.5205] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    L. Maiani, A.D. Polosa and V. Riquer, Probing Minimal Supersymmetry at the LHC with the Higgs Boson Masses, New J. Phys. 14 (2012) 073029 [arXiv:1202.5998] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    L. Maiani, A.D. Polosa and V. Riquer, Heavier Higgs Particles: Indications from Minimal Supersymmetry, Phys. Lett. B 718 (2012) 465 [arXiv:1209.4816] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L. Maiani, A.D. Polosa and V. Riquer, Bounds to the Higgs Sector Masses in Minimal Supersymmetry from LHC Data, Phys. Lett. B 724 (2013) 274 [arXiv:1305.2172] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Djouadi and J. Quevillon, The MSSM Higgs sector at a high M SU SY : reopening the low tanβ regime and heavy Higgs searches, JHEP 10 (2013) 028 [arXiv:1304.1787] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7 + 8 TeV LHC, Eur. Phys. J. C 73 (2013) 2512 [arXiv:1303.6591] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Complementarity between nonstandard Higgs boson searches and precision Higgs boson measurements in the MSSM, Phys. Rev. D 91 (2015) 035003 [arXiv:1410.4969] [INSPIRE].ADSGoogle Scholar
  33. [33]
    ATLAS collaboration, Search for charged Higgs bosons in the τ +jets final state with pp collision data recorded at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, ATLAS-CONF-2013-090 (2013).
  34. [34]
    CMS collaboration, Search for charged Higgs bosons with the H +τ + ν τ decay channel in the fully hadronic final state at \( \sqrt{s}=8 \) TeV, CMS-HIG-14-020.
  35. [35]
    ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].ADSGoogle Scholar
  36. [36]
    CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions, JHEP 10 (2014) 160 [CMS-PAS-HIG-13-021] [arXiv:1408.3316] [INSPIRE].Google Scholar
  37. [37]
    Particle Data Group collaboration, K. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001.Google Scholar
  38. [38]
    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaborations, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Carena, S. Heinemeyer, C.E.M. Wagner and G. Weiglein, Suggestions for benchmark scenarios for MSSM Higgs boson searches at hadron colliders, Eur. Phys. J. C 26 (2003) 601 [hep-ph/0202167] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Carena, S. Heinemeyer, O. Stål, C.E.M. Wagner and G. Weiglein, MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios after the Discovery of a Higgs-like Particle, Eur. Phys. J. C 73 (2013) 2552 [arXiv:1302.7033] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Heinemeyer, W. Hollik and G. Weiglein, Electroweak precision observables in the minimal supersymmetric standard model, Phys. Rept. 425 (2006) 265 [hep-ph/0412214] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Heinemeyer, MSSM Higgs physics at higher orders, Int. J. Mod. Phys. A 21 (2006) 2659 [hep-ph/0407244] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  45. [45]
    CMS collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states, JHEP 01 (2014) 096 [arXiv:1312.1129] [INSPIRE].ADSGoogle Scholar
  46. [46]
    CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].ADSGoogle Scholar
  47. [47]
    ATLAS collaboration, Search For Higgs Boson Pair Production in the \( \gamma \gamma b\overline{b} \) Final State using pp Collision Data at \( \sqrt{s}=8 \) TeV from the ATLAS Detector, Phys. Rev. Lett. 114 (2015) 081802 [arXiv:1406.5053] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    CMS collaboration, Search for resonant HH production in 2gamma+2b channel, CMS-PAS-HIG-13-032.
  49. [49]
    CMS collaboration, Search for a pseudoscalar boson A decaying into a Z and an h boson in the llbb final state, CMS-PAS-HIG-14-011.
  50. [50]
    A. Arbey, M. Battaglia and F. Mahmoudi, Supersymmetric Heavy Higgs Bosons at the LHC, Phys. Rev. D 88 (2013) 015007 [arXiv:1303.7450] [INSPIRE].ADSGoogle Scholar
  51. [51]
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    N. Craig, J. Galloway and S. Thomas, Searching for Signs of the Second Higgs Doublet, arXiv:1305.2424 [INSPIRE].
  53. [53]
    N.D. Christensen, T. Han and S. Su, MSSM Higgs Bosons at The LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].ADSGoogle Scholar
  54. [54]
    E. Arganda, J.L. Diaz-Cruz and A. Szynkman, Slim SUSY, Phys. Lett. B 722 (2013) 100 [arXiv:1301.0708] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    E. Arganda, J.L. Diaz-Cruz and A. Szynkman, Decays of H 0 /A 0 in supersymmetric scenarios with heavy sfermions, Eur. Phys. J. C 73 (2013) 2384 [arXiv:1211.0163] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    P.S.B. Dev and A. Pilaftsis, Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment, JHEP 12 (2014) 024 [arXiv:1408.3405] [INSPIRE].Google Scholar
  57. [57]
    P. Slavich, Low-tanβ scenario vs. hMSSM vs. effective THDM, talk given at The 8th workshop of LHC Higgs cross section working group, CERN, 22-24 January 2015, https://indico.cern.ch/event/331452/.
  58. [58]
    P. Draper, G. Lee and C.E.M. Wagner, Precise estimates of the Higgs mass in heavy supersymmetry, Phys. Rev. D 89 (2014) 055023 [arXiv:1312.5743] [INSPIRE].ADSGoogle Scholar
  59. [59]
    K. Cheung, R. Huo, J.S. Lee and Y.-L. Sming Tsai, Dark Matter in Split SUSY with Intermediate Higgses, JHEP 04 (2015) 151 [arXiv:1411.7329] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G. Lee et al., in preparation.Google Scholar
  61. [61]
    M. Frank et al., Charged Higgs Boson Mass of the MSSM in the Feynman Diagrammatic Approach, Phys. Rev. D 88 (2013) 055013 [arXiv:1306.1156] [INSPIRE].ADSGoogle Scholar
  62. [62]
    A. Brignole and F. Zwirner, Radiative corrections to the decay Hhh in the minimal supersymmetric standard model, Phys. Lett. B 299 (1993) 72 [hep-ph/9210266] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    S. Heinemeyer and W. Hollik, The decay h 0A 0A 0 A 0 : A complete one loop calculation in the MSSM, Nucl. Phys. B 474 (1996) 32 [hep-ph/9602318] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    V.D. Barger, M.S. Berger, A.L. Stange and R.J.N. Phillips, Supersymmetric Higgs boson hadroproduction and decays including radiative corrections, Phys. Rev. D 45 (1992) 4128 [INSPIRE].ADSGoogle Scholar
  65. [65]
    A. Dobado, M.J. Herrero, W. Hollik and S. Penaranda, Selfinteractions of the lightest MSSM Higgs boson in the large pseudoscalar mass limit, Phys. Rev. D 66 (2002) 095016 [hep-ph/0208014] [INSPIRE].ADSGoogle Scholar
  66. [66]
    M. Brucherseifer, R. Gavin and M. Spira, Minimal supersymmetric Higgs boson self-couplings: Two-loop O(α t α s) corrections, Phys. Rev. D 90 (2014) 117701 [arXiv:1309.3140] [INSPIRE].ADSGoogle Scholar
  67. [67]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  68. [68]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  69. [69]
    G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].ADSGoogle Scholar
  71. [71]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  72. [72]
    O. Buchmueller et al., Higgs and Supersymmetry, Eur. Phys. J. C 72 (2012) 2020 [arXiv:1112.3564] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs Search Results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    A. Arvanitaki and G. Villadoro, A Non Standard Model Higgs at the LHC as a Sign of Naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, An update on the constraints on the phenomenological MSSM from the new LHC Higgs results, Phys. Lett. B 720 (2013) 153 [arXiv:1211.4004] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    A. Djouadi, Implications of the Higgs discovery for the MSSM, Eur. Phys. J. C 74 (2014) 2704 [arXiv:1311.0720] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    N. Craig, The State of Supersymmetry after Run I of the LHC, arXiv:1309.0528 [INSPIRE].
  81. [81]
    N. Bernal, A. Djouadi and P. Slavich, The MSSM with heavy scalars, JHEP 07 (2007) 016 [arXiv:0705.1496] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  83. [83]
    A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].ADSGoogle Scholar
  84. [84]
    A. Djouadi, J. Kalinowski and P.M. Zerwas, Two and three-body decay modes of SUSY Higgs particles, Z. Phys. C 70 (1996) 435 [hep-ph/9511342] [INSPIRE].Google Scholar
  85. [85]
    S. Moretti and W.J. Stirling, Contributions of below threshold decays to MSSM Higgs branching ratios, Phys. Lett. B 347 (1995) 291 [hep-ph/9412209] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    F. Borzumati and A. Djouadi, Lower bounds on charged Higgs bosons from LEP and Tevatron, Phys. Lett. B 549 (2002) 170 [hep-ph/9806301] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs Bosons from Two Gluon Annihilation in Proton Proton Collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    D.A. Dicus and S. Willenbrock, Higgs Boson Production from Heavy Quark Fusion, Phys. Rev. D 39 (1989) 751 [INSPIRE].ADSGoogle Scholar
  89. [89]
    S. Dittmaier, M. Kramer and M. Spira, Higgs radiation off bottom quarks at the Tevatron and the CERN LHC, Phys. Rev. D 70 (2004) 074010 [hep-ph/0309204] [INSPIRE].ADSGoogle Scholar
  90. [90]
    S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth, Exclusive Higgs boson production with bottom quarks at hadron colliders, Phys. Rev. D 69 (2004) 074027 [hep-ph/0311067] [INSPIRE].ADSGoogle Scholar
  91. [91]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].ADSGoogle Scholar
  92. [92]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    R.V. Harlander and W.B. Kilgore, Production of a pseudoscalar Higgs boson at hadron colliders at next-to-next-to leading order, JHEP 10 (2002) 017 [hep-ph/0208096] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].
  98. [98]
    J. Baglio and A. Djouadi, Higgs production at the LHC, JHEP 03 (2011) 055 [arXiv:1012.0530] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    J. Baglio and A. Djouadi, Revisiting the constraints on the Supersymmetric Higgs sector at the Tevatron, Phys. Lett. B 699 (2011) 372 [arXiv:1012.2748] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    J. Baglio, A. Djouadi and R.M. Godbole, The apparent excess in the Higgs to di-photon rate at the LHC: New Physics or QCD uncertainties?, Phys. Lett. B 716 (2012) 203 [arXiv:1207.1451] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  102. [102]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  103. [103]
  104. [104]
    M. Spira, HIGLU: A program for the calculation of the total Higgs production cross-section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [INSPIRE].
  105. [105]
    F. Borzumati, J.L. Kneur and N. Polonsky, Charged-Higgs- and R-parity violating slepton-strahlung at hadron colliders, Phys. Rev. D 60 (1999) 115011.ADSGoogle Scholar
  106. [106]
    D.J. Miller, S. Moretti, D.P. Roy and W.J. Stirling, Detecting heavy charged Higgs bosons at the CERN LHC with four b quark tags, Phys. Rev. D 61 (2000) 055011 [hep-ph/9906230] [INSPIRE].ADSGoogle Scholar
  107. [107]
    T. Plehn, Charged Higgs boson production in bottom gluon fusion, Phys. Rev. D 67 (2003) 014018 [hep-ph/0206121] [INSPIRE].ADSGoogle Scholar
  108. [108]
    M. Flechl, R. Klees, M. Kramer, M. Spira and M. Ubiali, Improved cross-section predictions for heavy charged Higgs boson production at the LHC, Phys. Rev. D 91 (2015) 075015 [arXiv:1409.5615].ADSGoogle Scholar
  109. [109]
    Higgs Working Group collaboration, K.A. Assamagan et al., The Higgs working group: Summary report 2003, hep-ph/0406152 [INSPIRE].
  110. [110]
    CMS collaboration, Search for a heavy charged Higgs boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the CMS detector, CMS-HIG-13-026.
  111. [111]
    S. Dawson, A. Djouadi and M. Spira, QCD corrections to SUSY Higgs production: The Role of squark loops, Phys. Rev. Lett. 77 (1996) 16 [hep-ph/9603423] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    A. Djouadi, Squark effects on Higgs boson production and decay at the LHC, Phys. Lett. B 435 (1998) 101 [hep-ph/9806315] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    R.V. Harlander and M. Steinhauser, Supersymmetric Higgs production in gluon fusion at next-to-leading order, JHEP 09 (2004) 066 [hep-ph/0409010] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    R. Harlander and M. Steinhauser, Effects of SUSY QCD in hadronic Higgs production at next-to-next-to-leading order, Phys. Rev. D 68 (2003) 111701 [hep-ph/0308210] [INSPIRE].ADSGoogle Scholar
  115. [115]
    M. Muhlleitner, H. Rzehak and M. Spira, MSSM Higgs Boson Production via Gluon Fusion: The Large Gluino Mass Limit, JHEP 04 (2009) 023 [arXiv:0812.3815] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    M. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the \( \overline{t}b{H}^{+} \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    D. Noth and M. Spira, Higgs Boson Couplings to Bottom Quarks: Two-Loop Supersymmetry-QCD Corrections, Phys. Rev. Lett. 101 (2008) 181801 [arXiv:0808.0087] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    A. Djouadi and M. Drees, Higgs boson decays into light gravitinos, Phys. Lett. B 407 (1997) 243 [hep-ph/9703452] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    J.F. Gunion and H.E. Haber, Two-body Decays of Neutralinos and Charginos, Phys. Rev. D 37 (1988) 2515 [INSPIRE].ADSGoogle Scholar
  120. [120]
    A. Djouadi, J. Kalinowski and P.M. Zerwas, Exploring the SUSY Higgs sector at e + e linear colliders: A Synopsis, Z. Phys. C 57 (1993) 569 [INSPIRE].ADSGoogle Scholar
  121. [121]
    A. Djouadi, P. Janot, J. Kalinowski and P.M. Zerwas, SUSY decays of Higgs particles, Phys. Lett. B 376 (1996) 220 [hep-ph/9603368] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    A. Djouadi, J. Kalinowski, P. Ohmann and P.M. Zerwas, Heavy SUSY Higgs bosons at e+elinear colliders, Z. Phys. C 74 (1997) 93 [hep-ph/9605339] [INSPIRE].Google Scholar
  123. [123]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 04 (2014) 169 [arXiv:1402.7029] [INSPIRE].ADSGoogle Scholar
  124. [124]
    CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].Google Scholar
  125. [125]
    T.A.W. Martin and D. Morrissey, Electroweakino constraints from LHC data, JHEP 12 (2014) 168 [arXiv:1409.6322] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    WMAP collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].CrossRefGoogle Scholar
  127. [127]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].CrossRefGoogle Scholar
  128. [128]
    J.L. Lopez, D.V. Nanopoulos and K.-j. Yuan, Accurate neutralino relic density computations in supergravity models, Phys. Rev. D 48 (1993) 2766 [hep-ph/9304216] [INSPIRE].ADSGoogle Scholar
  129. [129]
    P. Nath and R.L. Arnowitt, Predictions in SU(5) supergravity grand unification with proton stability and relic density constraints, Phys. Rev. Lett. 70 (1993) 3696 [hep-ph/9302318] [INSPIRE].ADSCrossRefGoogle Scholar
  130. [130]
    M. Drees and A. Yamada, A decisive test of superstring inspired E 6 models, Phys. Rev. D 53 (1996) 1586 [hep-ph/9508254] [INSPIRE].ADSGoogle Scholar
  131. [131]
    L. Roszkowski, R. Ruiz de Austri and T. Nihei, New cosmological and experimental constraints on the CMSSM, JHEP 08 (2001) 024 [hep-ph/0106334] [INSPIRE].ADSCrossRefGoogle Scholar
  132. [132]
    A.B. Lahanas and V.C. Spanos, Implications of the pseudoscalar Higgs boson in determining the neutralino dark matter, Eur. Phys. J. C 23 (2002) 185 [hep-ph/0106345] [INSPIRE].ADSCrossRefGoogle Scholar
  133. [133]
    A. Djouadi, M. Drees and J.L. Kneur, Constraints on the minimal supergravity model and prospects for SUSY particle production at future linear e + e colliders, JHEP 08 (2001) 055 [hep-ph/0107316] [INSPIRE].ADSCrossRefGoogle Scholar
  134. [134]
    H. Baer, A. Belyaev, T. Krupovnickas and A. Mustafayev, SUSY normal scalar mass hierarchy reconciles (g − 2)μ , bsγ and relic density, JHEP 06 (2004) 044 [hep-ph/0403214] [INSPIRE].ADSCrossRefGoogle Scholar
  135. [135]
    A. Djouadi, M. Drees and J.-L. Kneur, Neutralino dark matter in mSUGRA: Reopening the light Higgs pole window, Phys. Lett. B 624 (2005) 60 [hep-ph/0504090] [INSPIRE].ADSCrossRefGoogle Scholar
  136. [136]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  137. [137]
    M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: A Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    CMS collaboration, Search for a standard model like Higgs boson in the decay channel \( H\to ZZ\to {\ell}^{+}{\ell}^{-}q\overline{q} \) at CMS, CMS-PAS-HIG-12-024.
  139. [139]
    ATLAS collaboration, A search for resonant Higgs-pair production in the \( b\overline{b}b\overline{b} \) final state in pp collisions at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2014-005 (2014).
  140. [140]
    CMS collaboration, Search for di-Higgs resonances decaying to 4 bottom quarks, CMS-PAS-HIG-14-013.
  141. [141]
    CMS collaboration, 2HDM scenario, H to hh and A to Zh, CMS-PAS-HIG-13-025.
  142. [142]
    K.J.F. Gaemers and F. Hoogeveen, Higgs Production and Decay Into Heavy Flavors With the Gluon Fusion Mechanism, Phys. Lett. B 146 (1984) 347 [INSPIRE].ADSCrossRefGoogle Scholar
  143. [143]
    D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett. B 333 (1994) 126 [hep-ph/9404359] [INSPIRE].ADSCrossRefGoogle Scholar
  144. [144]
    S. Moretti and D.A. Ross, On the top-antitop invariant mass spectrum at the LHC from a Higgs boson signal perspective, Phys. Lett. B 712 (2012) 245 [arXiv:1203.3746] [INSPIRE].ADSCrossRefGoogle Scholar
  145. [145]
    W. Bernreuther, M. Flesch and P. Haberl, Signatures of Higgs bosons in the top quark decay channel at hadron colliders, Phys. Rev. D 58 (1998) 114031 [hep-ph/9709284] [INSPIRE].ADSGoogle Scholar
  146. [146]
    V. Barger, T. Han and D.G.E. Walker, Top Quark Pairs at High Invariant Mass: A Model-Independent Discriminator of New Physics at the LHC, Phys. Rev. Lett. 100 (2008) 031801 [hep-ph/0612016] [INSPIRE].ADSCrossRefGoogle Scholar
  147. [147]
    R. Barcelo and M. Masip, Extra Higgs bosons in \( t\overline{t} \) production at the LHC, Phys. Rev. D 81 (2010) 075019 [arXiv:1001.5456] [INSPIRE].ADSGoogle Scholar
  148. [148]
    T. Figy and R. Zwicky, The other Higgses, at resonance, in the Lee-Wick extension of the Standard Model, JHEP 10 (2011) 145 [arXiv:1108.3765] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  149. [149]
    R. Frederix and F. Maltoni, Top pair invariant mass distribution: A Window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [INSPIRE].ADSCrossRefGoogle Scholar
  150. [150]
    T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].ADSCrossRefGoogle Scholar
  151. [151]
    ATLAS collaboration, Search for \( t\overline{t} \) resonances in the lepton plus jets final state with ATLAS using 4.7 fb −1 of pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 88 (2013) 012004 [arXiv:1305.2756] [INSPIRE].ADSGoogle Scholar
  152. [152]
    CMS collaboration, Searches for new physics using the \( t\overline{t} \) invariant mass distribution in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 111 (2013) 211804 [arXiv:1309.2030] [INSPIRE].ADSCrossRefGoogle Scholar
  153. [153]
    A. Djouadi et al., in preparation.Google Scholar
  154. [154]
    M. Czakon and A. Mitov, Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  155. [155]
    S. Kretzer, H.L. Lai, F.I. Olness and W.K. Tung, CTEQ6 parton distributions with heavy quark mass effects, Phys. Rev. D 69 (2004) 114005 [hep-ph/0307022] [INSPIRE].ADSGoogle Scholar
  156. [156]
    M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross section at Hadron Colliders Through O(α S4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  157. [157]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • A. Djouadi
    • 1
  • L. Maiani
    • 2
  • A. Polosa
    • 2
  • J. Quevillon
    • 3
    Email author
  • V. Riquer
    • 2
  1. 1.Laboratoire de Physique Théorique d’Orsay, Université Paris XI and CNRSOrsayFrance
  2. 2.Department of Physics and INFNUniversità di Roma SapienzaRomaItaly
  3. 3.Theoretical Particle Physics and Cosmology Group, Physics DepartmentKing’s College LondonLondonUK

Personalised recommendations