Advertisement

Effective theory of black holes in the 1/D expansion

  • Roberto EmparanEmail author
  • Tetsuya Shiromizu
  • Ryotaku Suzuki
  • Kentaro Tanabe
  • Takahiro Tanaka
Open Access
Regular Article - Theoretical Physics

Abstract

The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this ‘black hole surface’ (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for ‘black droplets’, i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.

Keywords

Black Holes Classical Theories of Gravity Black Holes in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V. Asnin et al., High and low dimensions in the black hole negative mode, Class. Quant. Grav. 24 (2007) 5527 [arXiv:0706.1555] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. Emparan, R. Suzuki and K. Tanabe, The large D limit of general relativity, JHEP 06 (2013) 009 [arXiv:1302.6382] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Emparan, D. Grumiller and K. Tanabe, Large-D gravity and low-D strings, Phys. Rev. Lett. 110 (2013) 251102 [arXiv:1303.1995] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R. Emparan and K. Tanabe, Universal quasinormal modes of large D black holes, Phys. Rev. D 89 (2014) 064028 [arXiv:1401.1957] [INSPIRE].ADSGoogle Scholar
  5. [5]
    R. Emparan, R. Suzuki and K. Tanabe, Instability of rotating black holes: large D analysis, JHEP 06 (2014) 106 [arXiv:1402.6215] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R. Emparan, R. Suzuki and K. Tanabe, Decoupling and non-decoupling dynamics of large D black holes, JHEP 07 (2014) 113 [arXiv:1406.1258] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Emparan, R. Suzuki and K. Tanabe, Quasinormal modes of (Anti-)de Sitter black holes in the 1/D expansion, JHEP 04 (2015) 085 [arXiv:1502.02820] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    Ó.J.C. Dias, G.S. Hartnett and J.E. Santos, Quasinormal modes of asymptotically flat rotating black holes, Class. Quant. Grav. 31 (2014) 245011 [arXiv:1402.7047] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J. Camps and R. Emparan, Derivation of the blackfold effective theory, JHEP 03 (2012) 038 [JHEP 06 (2012) 155] [arXiv:1201.3506] [INSPIRE].
  12. [12]
    G.W. Gibbons, D. Ida and T. Shiromizu, Uniqueness and nonuniqueness of static black holes in higher dimensions, Phys. Rev. Lett. 89 (2002) 041101 [hep-th/0206049] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    W. Hsiang, Z. Teng and W. Yu, Examples of constant mean curvature immersions of the 3-sphere into euclidean 4-space, Proc. Natl. Acad. Sci. U.S.A. 79 (1982) 3931.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    V.E. Hubeny, D. Marolf and M. Rangamani, Hawking radiation in large-N strongly-coupled field theories, Class. Quant. Grav. 27 (2010) 095015 [arXiv:0908.2270] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S.S. Gubser, On nonuniform black branes, Class. Quant. Grav. 19 (2002) 4825 [hep-th/0110193] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    T. Wiseman, Static axisymmetric vacuum solutions and nonuniform black strings, Class. Quant. Grav. 20 (2003) 1137 [hep-th/0209051] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    R. Emparan and N. Haddad, Self-similar critical geometries at horizon intersections and mergers, JHEP 10 (2011) 064 [arXiv:1109.1983] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    T. Tanaka, Classical black hole evaporation in Randall-Sundrum infinite brane world, Prog. Theor. Phys. Suppl. 148 (2003) 307 [gr-qc/0203082] [INSPIRE].
  20. [20]
    R. Emparan, A. Fabbri and N. Kaloper, Quantum black holes as holograms in AdS brane worlds, JHEP 08 (2002) 043 [hep-th/0206155] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    P. Figueras, J. Lucietti and T. Wiseman, Ricci solitons, Ricci flow and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua, Class. Quant. Grav. 28 (2011) 215018 [arXiv:1104.4489] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    V.E. Hubeny, D. Marolf and M. Rangamani, Black funnels and droplets from the AdS C-metrics, Class. Quant. Grav. 27 (2010) 025001 [arXiv:0909.0005] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    V.E. Hubeny, D. Marolf and M. Rangamani, Hawking radiation from AdS black holes, Class. Quant. Grav. 27 (2010) 095018 [arXiv:0911.4144] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    M.M. Caldarelli, O.J.C. Dias, R. Monteiro and J.E. Santos, Black funnels and droplets in thermal equilibrium, JHEP 05 (2011) 116 [arXiv:1102.4337] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    J.E. Santos and B. Way, Black funnels, JHEP 12 (2012) 060 [arXiv:1208.6291] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Fischetti, D. Marolf and J.E. Santos, AdS flowing black funnels: stationary AdS black holes with non-Killing horizons and heat transport in the dual CFT, Class. Quant. Grav. 30 (2013) 075001 [arXiv:1212.4820] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S. Fischetti and J.E. Santos, Rotating black droplet, JHEP 07 (2013) 156 [arXiv:1304.1156] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    J.E. Santos and B. Way, Black droplets, JHEP 08 (2014) 072 [arXiv:1405.2078] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    B. Kleihaus, J. Kunz and E. Radu, New nonuniform black string solutions, JHEP 06 (2006) 016 [hep-th/0603119] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    E. Sorkin, Non-uniform black strings in various dimensions, Phys. Rev. D 74 (2006) 104027 [gr-qc/0608115] [INSPIRE].
  31. [31]
    M. Headrick, S. Kitchen and T. Wiseman, A new approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav. 27 (2010) 035002 [arXiv:0905.1822] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    P. Figueras, K. Murata and H.S. Reall, Stable non-uniform black strings below the critical dimension, JHEP 11 (2012) 071 [arXiv:1209.1981] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    D. Kouznetsov, J-F. Bisson, J. Li and K. Ueda, Self-pulsing laser as oscillator Toda: approximations through elementary functions, J. Phys. A 40 (2007) 2107.ADSMathSciNetzbMATHGoogle Scholar
  34. [34]
    J.L. Jaramillo, A Young-Laplace law for black hole horizons, Phys. Rev. D 89 (2014) 021502 [arXiv:1309.6593] [INSPIRE].ADSGoogle Scholar
  35. [35]
    T. Damour, Surface effects in black hole physics, in Proceedings of the second Marcel Grossmann Meeting on General Relativity, R. Ruffni ed., North Holland, The Netherlands (1982).Google Scholar
  36. [36]
    R.H. Price and K.S. Thorne, Membrane viewpoint on black holes: properties and evolution of the stretched horizon, Phys. Rev. D 33 (1986) 915 [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    R. Suzuki and K. Tanabe, Non-uniform black strings and the critical dimension in the 1/D expansion, to appear.Google Scholar
  38. [38]
    R. Suzuki and K. Tanabe, Stationary black holes: large D analysis, arXiv:1505.01282 [INSPIRE].
  39. [39]
    S. Bhattacharyya, A. De, S. Minwalla, R. Mohan and A. Saha, A membrane paradigm at large D, arXiv:1504.06613 [INSPIRE].

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Roberto Emparan
    • 1
    • 2
    Email author
  • Tetsuya Shiromizu
    • 3
    • 4
  • Ryotaku Suzuki
    • 5
  • Kentaro Tanabe
    • 6
  • Takahiro Tanaka
    • 7
    • 8
  1. 1.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  2. 2.Departament de F´ısica Fonamental, Institut de Ciències del CosmosUniversitat de BarcelonaBarcelonaSpain
  3. 3.Department of MathematicsNagoya UniversityNagoyaJapan
  4. 4.Kobayashi-Maskawa InstituteNagoya UniversityNagoyaJapan
  5. 5.Department of PhysicsOsaka City UniversityOsakaJapan
  6. 6.Theory Center, Institute of Particles and Nuclear Studies, KEKTsukubaJapan
  7. 7.Department of PhysicsKyoto UniversityKyotoJapan
  8. 8.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations