Advertisement

Supersymmetric black holes and attractors in gauged supergravity with hypermultiplets

  • Samuele Chimento
  • Dietmar KlemmEmail author
  • Nicolò Petri
Open Access
Regular Article - Theoretical Physics

Abstract

We consider four-dimensional N = 2 supergravity coupled to vector- and hypermultiplets, where abelian isometries of the quaternionic Kähler hypermultiplet scalar manifold are gauged. Using the recipe given by Meessen and Ortín in arXiv:1204.0493, we analytically construct a supersymmetric black hole solution for the case of just one vector multiplet with prepotential \( \mathrm{\mathcal{F}}=-i{\chi}^0{\chi}^1 \), and the universal hypermultiplet. This solution has a running dilaton, and it interpolates between AdS2 × H2 at the horizon and a hyperscaling-violating type geometry at infinity, conformal to AdS2 × H2. It carries two magnetic charges that are completely fixed in terms of the parameters that appear in the Killing vector used for the gauging.

In the second part of the paper, we extend the work of Bellucci et al. on black hole attractors in gauged supergravity to the case where also hypermultiplets are present. The attractors are shown to be governed by an effective potential V eff, which is extremized on the horizon by all the scalar fields of the theory. Moreover, the entropy is given by the critical value of V eff. In the limit of vanishing scalar potential, V eff reduces (up to a prefactor) to the usual black hole potential.

Keywords

Black Holes in String Theory Black Holes Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    P. Meessen and T. Ortín, Supersymmetric solutions to gauged N = 2 D = 4 SUGRA: the full timelike shebang, Nucl. Phys. B 863 (2012) 65 [arXiv:1204.0493] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    N. Halmagyi, M. Petrini and A. Zaffaroni, BPS black holes in AdS 4 from M-theory, JHEP 08 (2013) 124 [arXiv:1305.0730] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    K. Hristov, H. Looyestijn and S. Vandoren, BPS black holes in N = 2 D = 4 gauged supergravities, JHEP 08 (2010) 103 [arXiv:1005.3650] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    M. Gutperle and W.A. Sabra, A supersymmetric solution in N = 2 gauged supergravity with the universal hypermultiplet, Phys. Lett. B 511 (2001) 311 [hep-th/0104044] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    H. Erbin and N. Halmagyi, Abelian hypermultiplet gaugings and BPS vacua in N = 2 supergravity, JHEP 05 (2015) 122 [arXiv:1409.6310] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    N. Halmagyi, M. Petrini and A. Zaffaroni, Non-Relativistic Solutions of N = 2 Gauged Supergravity, JHEP 08 (2011) 041 [arXiv:1102.5740] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    D. Cassani and A.F. Faedo, Constructing Lifshitz solutions from AdS, JHEP 05 (2011) 013 [arXiv:1102.5344] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  15. [15]
    S. Ferrara and R. Kallosh, Universality of supersymmetric attractors, Phys. Rev. D 54 (1996) 1525 [hep-th/9603090] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  16. [16]
    S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    J.F. Morales and H. Samtleben, Entropy function and attractors for AdS black holes, JHEP 10 (2006) 074 [hep-th/0608044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, D = 4 Black Hole Attractors in N = 2 Supergravity with Fayet-Iliopoulos Terms, Phys. Rev. D 77 (2008) 085027 [arXiv:0802.0141] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    M. Huebscher, P. Meessen, T. Ortín and S. Vaula, Supersymmetric N = 2 Einstein-Yang-Mills monopoles and covariant attractors, Phys. Rev. D 78 (2008) 065031 [arXiv:0712.1530] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    S. Kachru, R. Kallosh and M. Shmakova, Generalized Attractor Points in Gauged Supergravity, Phys. Rev. D 84 (2011) 046003 [arXiv:1104.2884] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. Bellorín and T. Ortín, All the supersymmetric configurations of N = 4, D = 4 supergravity, Nucl. Phys. B 726 (2005) 171 [hep-th/0506056] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    S. Cecotti, S. Ferrara and L. Girardello, Geometry of Type II Superstrings and the Moduli of Superconformal Field Theories, Int. J. Mod. Phys. A 4 (1989) 2475 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    K.C.K. Chan, J.H. Horne and R.B. Mann, Charged dilaton black holes with unusual asymptotics, Nucl. Phys. B 447 (1995) 441 [gr-qc/9502042] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    D. Cassani, P. Koerber and O. Varela, All homogeneous N = 2 M-theory truncations with supersymmetric AdS 4 vacua, JHEP 11 (2012) 173 [arXiv:1208.1262] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Samuele Chimento
    • 1
  • Dietmar Klemm
    • 1
    Email author
  • Nicolò Petri
    • 1
  1. 1.Dipartimento di FisicaUniversità di Milano, and INFN, Sezione di MilanoMilanoItaly

Personalised recommendations