All timelike supersymmetric solutions of three-dimensional half-maximal supergravity

  • Nihat Sadik Deger
  • George Moutsopoulos
  • Henning Samtleben
  • Özgür Sarıoğlu
Open Access
Regular Article - Theoretical Physics


We first classify all supersymmetric solutions of the 3-dimensional half-maximal ungauged supergravity that possess a timelike Killing vector by considering their identification under the complexification of the local symmetry of the theory. It is found that only solutions that preserve 16/2 n , 1 ≤ n ≤ 3 real supersymmetries are allowed. We then classify supersymmetric solutions under the real local symmetry of the theory and we are able to solve the equations of motion for all of them. It is shown that all such solutions can be expressed as a direct sum of solutions of the integrable Liouville and SU(3) Toda systems. This completes the construction of all supersymmetric solutions of the model since the null case has already been solved.


Supergravity Models Extended Supersymmetry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J. Gillard, U. Gran and G. Papadopoulos, The spinorial geometry of supersymmetric backgrounds, Class. Quant. Grav. 22 (2005) 1033 [hep-th/0410155] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of \( \mathcal{N}=1 \) vacua, JHEP 11 (2005) 020 [hep-th/0505212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    K.P. Tod, More on supercovariantly constant spinors, Class. Quant. Grav. 12 (1995) 1801 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    K. Tod, All metrics admitting supercovariantly constant spinors, Phys. Lett. B 121 (1983) 241 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five-dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    N.S. Deger, H. Samtleben and O. Sarioglu, On the supersymmetric solutions of D = 3 half-maximal supergravities, Nucl. Phys. B 840 (2010) 29 [arXiv:1003.3119] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J. de Boer, D.R. Mayerson and M. Shigemori, Classifying supersymmetric solutions in 3D maximal supergravity, Class. Quant. Grav. 31 (2014) 235004 [arXiv:1403.4600] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    N. Marcus and J.H. Schwarz, Three-dimensional supergravity theories, Nucl. Phys. B 228 (1983) 145 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    H. Nicolai and H. Samtleben, N = 8 matter coupled AdS 3 supergravities, Phys. Lett. B 514 (2001) 165 [hep-th/0106153] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    B. de Wit, I. Herger and H. Samtleben, Gauged locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys. B 671 (2003) 175 [hep-th/0307006] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    B. de Wit, A.K. Tollsten and H. Nicolai, Locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys. B 392 (1993) 3 [hep-th/9208074] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Am. J. Math. 93 (1971) 753.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    N. Burgoyne and R. Cushman, Conjugacy classes in linear groups, J. Algebra 44 (1977) 339.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    D.Z. Djokovic, J. Patera, P. Winternitz and H. Zassenhaus, Normal forms of elements of classical real and complex Lie and Jordan algebras, J. Math. Phys. 24 (1983) 1363 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    R.A. Horn and C.A. Johnson, Matrix analysis, Cambridge University Press, Cambridge U.K. (1990).zbMATHGoogle Scholar
  16. [16]
    G. Dunne, Self-dual Chern-Simons theories, Springer Science & Business Media (1995).Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Nihat Sadik Deger
    • 1
  • George Moutsopoulos
    • 1
  • Henning Samtleben
    • 2
  • Özgür Sarıoğlu
    • 3
  1. 1.Department of MathematicsBogazici UniversityBebekTurkey
  2. 2.Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS et ENS de LyonLyon CEDEX 07France
  3. 3.Department of PhysicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations