Two-loop Yang-Mills diagrams from superstring amplitudes

  • Lorenzo Magnea
  • Sam Playle
  • Rodolfo Russo
  • Stefano Sciuto
Open Access
Regular Article - Theoretical Physics

Abstract

Starting from the superstring amplitude describing interactions among D-branes with a constant world-volume field strength, we present a detailed analysis of how the open string degeneration limits reproduce the corresponding field theory Feynman diagrams. A key ingredient in the string construction is represented by the twisted (Prym) super differentials, as their periods encode the information about the background field. We provide an efficient method to calculate perturbatively the determinant of the twisted period matrix in terms of sets of super-moduli appropriate to the degeneration limits. Using this result we show that there is a precise one-to-one correspondence between the degeneration of different factors in the superstring amplitudes and one-particle irreducible Feynman diagrams capturing the gauge theory effective action at the two-loop level.

Keywords

Superstrings and Heterotic Strings D-branes 

Supplementary material

13130_2015_1537_MOESM1_ESM.nb (89 kb)
ESM 1(NB 88 kb)

References

  1. [1]
    E. Witten, The super period matrix with Ramond punctures, J. Geom. Phys. 92 (2015) 210 [arXiv:1501.02499] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    E. D’Hoker and D.H. Phong, The super period matrix with Ramond punctures in the supergravity formulation, arXiv:1501.02675 [INSPIRE].
  3. [3]
    R. Pius, A. Rudra and A. Sen, Mass renormalization in string theory: general states, JHEP 07 (2014) 062 [arXiv:1401.7014] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    R. Pius, A. Rudra and A. Sen, String perturbation theory around dynamically shifted vacuum, JHEP 10 (2014) 070 [arXiv:1404.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Sen, Off-shell amplitudes in superstring theory, Fortschr. Phys. 63 (2015) 149 [arXiv:1408.0571] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    E. D’Hoker and M.B. Green, Zhang-Kawazumi invariants and superstring amplitudes, arXiv:1308.4597 [INSPIRE].
  7. [7]
    E. D’Hoker, M.B. Green, B. Pioline and R. Russo, Matching the D 6 R 4 interaction at two-loops, JHEP 01 (2015) 031 [arXiv:1405.6226] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    P. Tourkine, Tropical amplitudes, arXiv:1309.3551 [INSPIRE].
  9. [9]
    E. Witten, Superstring perturbation theory revisited, arXiv:1209.5461 [INSPIRE].
  10. [10]
    E. D’Hoker, Topics in two-loop superstring perturbation theory, arXiv:1403.5494 [INSPIRE].
  11. [11]
    L. Magnea, S. Playle, R. Russo and S. Sciuto, Multi-loop open string amplitudes and their field theory limit, JHEP 09 (2013) 081 [arXiv:1305.6631] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    E.S. Fradkin and A.A. Tseytlin, Nonlinear electrodynamics from quantized strings, Phys. Lett. B 163 (1985) 123 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    A. Abouelsaood, C.G. Callan Jr., C.R. Nappi and S.A. Yost, Open strings in background gauge fields, Nucl. Phys. B 280 (1987) 599 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    C. Bachas and M. Porrati, Pair creation of open strings in an electric field, Phys. Lett. B 296 (1992) 77 [hep-th/9209032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    L. Magnea, R. Russo and S. Sciuto, Two-loop Euler-Heisenberg effective actions from charged open strings, Int. J. Mod. Phys. A 21 (2006) 533 [hep-th/0412087] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    J.-L. Gervais and A. Neveu, Feynman rules for massive gauge fields with dual diagram topology, Nucl. Phys. B 46 (1972) 381 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    L. Crane and J.M. Rabin, Super Riemann surfaces: uniformization and Teichmüller theory, Commun. Math. Phys. 113 (1988) 601 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    E.J. Martinec, Conformal field theory on a (super-)Riemann surface, Nucl. Phys. B 281 (1987) 157 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S.B. Giddings and P.C. Nelson, The geometry of super Riemann surfaces, Commun. Math. Phys. 116 (1988) 607 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    E. D’Hoker and D.H. Phong, The geometry of string perturbation theory, Rev. Mod. Phys. 60 (1988) 917 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    E. Witten, Notes on super Riemann surfaces and their moduli, arXiv:1209.2459 [INSPIRE].
  22. [22]
    C. Lovelace, M-loop generalized Veneziano formula, Phys. Lett. B 32 (1970) 703 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    M. Kaku and L. Yu, The general multi-loop Veneziano amplitude, Phys. Lett. B 33 (1970) 166 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    V. Alessandrini, A general approach to dual multiloop diagrams, Nuovo Cim. A 2 (1971) 321 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    D.I. Olive, Operator vertices and propagators in dual theories, Nuovo Cim. A 3 (1971) 399 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    V. Alessandrini and D. Amati, Properties of dual multiloop amplitudes, Nuovo Cim. A 4 (1971) 793 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    C. Montonen, Multiloop amplitudes in additive dual-resonance models, Nuovo Cim. A 19 (1974) 69 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P. Di Vecchia, R. Nakayama, J.L. Petersen, J. Sidenius and S. Sciuto, BRST invariant N -reggeon vertex, Phys. Lett. B 182 (1986) 164 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    P. Di Vecchia, M. Frau, A. Lerda and S. Sciuto, A simple expression for the multiloop amplitude in the bosonic string, Phys. Lett. B 199 (1987) 49 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    P. Di Vecchia, K. Hornfeck, M. Frau, A. Lerda and S. Sciuto, N -string, g-loop vertex for the fermionic string, Phys. Lett. B 211 (1988) 301 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    P. Di Vecchia et al., N -point g-loop vertex for a free bosonic theory with vacuum charge Q, Nucl. Phys. B 322 (1989) 317 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    P. Di Vecchia et al., N -point g-loop vertex for a free fermionic theory with arbitrary spin, Nucl. Phys. B 333 (1990) 635 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    R. Russo and S. Sciuto, Twisted determinants on higher genus Riemann surfaces, Nucl. Phys. B 669 (2003) 207 [hep-th/0306129] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    K. Aoki, E. D’Hoker and D.H. Phong, Two loop superstrings on orbifold compactifications, Nucl. Phys. B 688 (2004) 3 [hep-th/0312181] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    R. Russo and S. Sciuto, Twisted determinants and bosonic open strings in an electromagnetic field, Fortschr. Phys. 52 (2004) 678 [hep-th/0312205] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    I. Antoniadis, K.S. Narain and T.R. Taylor, Open string topological amplitudes and gaugino masses, Nucl. Phys. B 729 (2005) 235 [hep-th/0507244] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Scherk, Zero-slope limit of the dual resonance model, Nucl. Phys. B 31 (1971) 222 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M.L. Mangano, S.J. Parke and Z. Xu, Duality and multi-gluon scattering, Nucl. Phys. B 298 (1988) 653 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Z. Bern and D.A. Kosower, A new approach to one loop calculations in gauge theories, Phys. Rev. D 38 (1988) 1888 [INSPIRE].ADSGoogle Scholar
  42. [42]
    Z. Bern and D.A. Kosower, Efficient calculation of one loop QCD amplitudes, Phys. Rev. Lett. 66 (1991) 1669 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys. B 362 (1991) 389 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys. B 379 (1992) 451 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    Z. Bern and D.C. Dunbar, A mapping between Feynman and string motivated one loop rules in gauge theories, Nucl. Phys. B 379 (1992) 562 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    Z. Bern, A compact representation of the one loop N-gluon amplitude, Phys. Lett. B 296 (1992) 85 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett. 70 (1993) 2677 [hep-ph/9302280] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M.J. Strassler, Field theory without Feynman diagrams: one loop effective actions, Nucl. Phys. B 385 (1992) 145 [hep-ph/9205205] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    M.G. Schmidt and C. Schubert, On the calculation of effective actions by string methods, Phys. Lett. B 318 (1993) 438 [hep-th/9309055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    M.G. Schmidt and C. Schubert, The worldline path integral approach to Feynman graphs, hep-ph/9412358 [INSPIRE].
  51. [51]
    C. Schubert, Perturbative quantum field theory in the string inspired formalism, Phys. Rept. 355 (2001) 73 [hep-th/0101036] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    P. Dai and W. Siegel, Worldline Green functions for arbitrary Feynman diagrams, Nucl. Phys. B 770 (2007) 107 [hep-th/0608062] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    F. Bastianelli, O. Corradini and E. Latini, Higher spin fields from a worldline perspective, JHEP 02 (2007) 072 [hep-th/0701055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    P. Di Vecchia, L. Magnea, A. Lerda, R. Russo and R. Marotta, Renormalization constants from string theory, hep-th/9602055 [INSPIRE].
  55. [55]
    A. Frizzo, L. Magnea and R. Russo, Systematics of one loop Yang-Mills diagrams from bosonic string amplitudes, Nucl. Phys. B 604 (2001) 92 [hep-ph/0012129] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  56. [56]
    P. Di Vecchia, L. Magnea, A. Lerda, R. Marotta and R. Russo, Two loop scalar diagrams from string theory, Phys. Lett. B 388 (1996) 65 [hep-th/9607141] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    A. Frizzo, L. Magnea and R. Russo, Scalar field theory limits of bosonic string amplitudes, Nucl. Phys. B 579 (2000) 379 [hep-th/9912183] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    R. Marotta and F. Pezzella, Two loop ϕ 4 diagrams from string theory, Phys. Rev. D 61 (2000) 106006 [hep-th/9912158] [INSPIRE].ADSMathSciNetGoogle Scholar
  59. [59]
    L. Magnea and R. Russo, String derivation of two loop Feynman diagrams, AIP Conf. Proc. 415 (1997) 347 [hep-ph/9708471] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    L. Magnea and R. Russo, Two loop gluon diagrams from string theory, AIP Conf. Proc. 407 (1997) 913 [hep-ph/9706396] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    B. Körs and M.G. Schmidt, Two loop Feynman diagrams in Yang-Mills theory from bosonic string amplitudes, hep-th/0003171 [INSPIRE].
  62. [62]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998) [INSPIRE].CrossRefMATHGoogle Scholar
  63. [63]
    R.R. Metsaev and A.A. Tseytlin, On loop corrections to string theory effective actions, Nucl. Phys. B 298 (1988) 109 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    K. Hornfeck, Three-reggeon light-cone vertex of the Neveu-Schwarz string, Nucl. Phys. B 293 (1987) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    L. Álvarez-Gaumé, G.W. Moore and C. Vafa, Theta functions, modular invariance and strings, Commun. Math. Phys. 106 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  66. [66]
    M. Frau, I. Pesando, S. Sciuto, A. Lerda and R. Russo, Scattering of closed strings from many D-branes, Phys. Lett. B 400 (1997) 52 [hep-th/9702037] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    R. Russo and S. Sciuto, The twisted open string partition function and Yukawa couplings, JHEP 04 (2007) 030 [hep-th/0701292] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    P. Di Vecchia, L. Magnea, A. Lerda, R. Russo and R. Marotta, String techniques for the calculation of renormalization constants in field theory, Nucl. Phys. B 469 (1996) 235 [hep-th/9601143] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  69. [69]
    P. Vanhove, The physics and the mixed Hodge structure of Feynman integrals, Proc. Symp. Pure Math. 88 (2014) 161 [arXiv:1401.6438] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  70. [70]
    P. Di Vecchia and A. Liccardo, D branes in string theory, II, hep-th/9912275 [INSPIRE].
  71. [71]
    E. Witten, Notes on supermanifolds and integration, arXiv:1209.2199 [INSPIRE].
  72. [72]
    P. Goddard, J. Goldstone, C. Rebbi and C.B. Thorn, Quantum dynamics of a massless relativistic string, Nucl. Phys. B 56 (1973) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    C.B. Thorn, A world sheet description of planar Yang-Mills theory, Nucl. Phys. B 637 (2002) 272 [hep-th/0203167] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  74. [74]
    M. Headrick, grassmann.m: a package that teaches Mathematica how to manipulate Grassmann variables (2015), http://web.archive.org/web/20150317172836/ http://people.brandeis.edu/∼headrick/Mathematica/grassmann.m.
  75. [75]
    D. Friedan, Notes on string theory and two dimensional conformal field theory, in M.B. Green et al. eds., Unified string theories, World Scientific (1986), pp. 162-213.Google Scholar
  76. [76]
    L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The conformal field theory of orbifolds, Nucl. Phys. B 282 (1987) 13 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    A.A. Tseytlin, Open superstring partition function in constant gauge field background at finite temperature, Nucl. Phys. B 524 (1998) 41 [hep-th/9802133] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  78. [78]
    C. Bachas, D-brane dynamics, Phys. Lett. B 374 (1996) 37 [hep-th/9511043] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    M. Berkooz, M.R. Douglas and R.G. Leigh, Branes intersecting at angles, Nucl. Phys. B 480 (1996) 265 [hep-th/9606139] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Lorenzo Magnea
    • 1
  • Sam Playle
    • 1
  • Rodolfo Russo
    • 2
  • Stefano Sciuto
    • 1
  1. 1.Dipartimento di FisicaUniversità di Torino, and INFN, Sezione di TorinoTorinoItaly
  2. 2.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonUnited Kingdom

Personalised recommendations