Analytic continuation of black hole entropy in Loop Quantum Gravity

Abstract

We define the analytic continuation of the number of black hole microstates in Loop Quantum Gravity to complex values of the Barbero-Immirzi parameter γ. This construction deeply relies on the link between black holes and Chern-Simons theory. Technically, the key point consists in writing the number of microstates as an integral in the complex plane of a holomorphic function, and to make use of complex analysis techniques to perform the analytic continuation. Then, we study the thermodynamical properties of the corresponding system (the black hole is viewed as a gas of indistinguishable punctures) in the framework of the grand canonical ensemble where the energy is defined à la Frodden-Gosh-Perez from the point of view of an observer located close to the horizon. The semi-classical limit occurs at the Unruh temperature T U associated to this local observer. When γ = ±i, the entropy reproduces at the semi-classical limit the area law with quantum corrections. Furthermore, the quantum corrections are logarithmic provided that the chemical potential is fixed to the simple value μ = 2T U.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  2. [2]

    S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    M. Bañados, C. Teitelboim and J. Zanelli, Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    S. Carlip, Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    C. Rovelli, Black hole entropy from loop quantum gravity, Phys. Rev. Lett. 77 (1996) 3288 [gr-qc/9603063] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    A. Ashtekar, J.C. Baez and K. Krasnov, Quantum geometry of isolated horizons and black hole entropy, Adv. Theor. Math. Phys. 4 (2000) 1 [gr-qc/0005126] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    K.A. Meissner, Black hole entropy in loop quantum gravity, Class. Quant. Grav. 21 (2004) 5245 [gr-qc/0407052] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    I. Agullo, J.F. Barbero G., J. Dìaz-Polo, E. Fernández-Borja and E.J.S. Villaseñor, Black hole state counting in LQG: A Number theoretical approach, Phys. Rev. Lett. 100 (2008) 211301 [arXiv:0802.4077] [INSPIRE].

  10. [10]

    J. Engle, K. Noui, A. Perez and D. Pranzetti, Black hole entropy from an SU(2)-invariant formulation of Type I isolated horizons, Phys. Rev. D 82 (2010) 044050 [arXiv:1006.0634] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    J. Engle, K. Noui, A. Perez and D. Pranzetti, The SU(2) Black Hole entropy revisited, JHEP 05 (2011) 016 [arXiv:1103.2723] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    J. Engle, A. Perez and K. Noui, Black hole entropy and SU(2) Chern-Simons theory, Phys. Rev. Lett. 105 (2010) 031302 [arXiv:0905.3168] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    J.F. Barbero G., Real Ashtekar variables for Lorentzian signature space times, Phys. Rev. D 51 (1995) 5507 [gr-qc/9410014] [INSPIRE].

  14. [14]

    G. Immirzi, Real and complex connections for canonical gravity, Class. Quant. Grav. 14 (1997) L177 [gr-qc/9612030] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    A.Y. Alekseev, H. Grosse and V. Schomerus, Combinatorial quantization of the Hamiltonian Chern-Simons theory, Commun. Math. Phys. 172 (1995) 317 [hep-th/9403066] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    A.Y. Alekseev, H. Grosse and V. Schomerus, Combinatorial quantization of the Hamiltonian Chern-Simons theory. 2., Commun. Math. Phys. 174 (1995) 561 [hep-th/9408097] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    A.Y. Alekseev and V. Schomerus, Representation theory of Chern-Simons observables, q-alg/9503016 [INSPIRE].

  20. [20]

    E. Buffenoir, K. Noui and P. Roche, Hamiltonian quantization of Chern-Simons theory with \( \mathrm{S}\mathrm{L}\left(2,\mathbb{C}\right) \) group, Class. Quant. Grav. 19 (2002) 4953 [hep-th/0202121] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    C. Meusburger and B.J. Schroers, The Quantization of Poisson structures arising in Chern-Simons theory with gauge group \( G\ltimes {\mathfrak{g}}^{\ast } \), Adv. Theor. Math. Phys. 7 (2004) 1003 [hep-th/0310218] [INSPIRE].

    Article  MATH  Google Scholar 

  22. [22]

    C. Meusburger and B.J. Schroers, Poisson structure and symmetry in the Chern-Simons formulation of (2 + 1)-dimensional gravity, Class. Quant. Grav. 20 (2003) 2193 [gr-qc/0301108] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    C. Meusburger and K. Noui, The Hilbert space of 3d gravity: quantum group symmetries and observables, Adv. Theor. Math. Phys. 14 (2010) 1651 [arXiv:0809.2875] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    C. Meusburger and K. Noui, Combinatorial quantisation of the Euclidean torus universe, Nucl. Phys. B 841 (2010) 463 [arXiv:1007.4615] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    K. Noui and A. Perez, Three-dimensional loop quantum gravity: Physical scalar product and spin foam models, Class. Quant. Grav. 22 (2005) 1739 [gr-qc/0402110] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    K. Noui and A. Perez, Three-dimensional loop quantum gravity: Coupling to point particles, Class. Quant. Grav. 22 (2005) 4489 [gr-qc/0402111] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    K. Noui, A. Perez and D. Pranzetti, Canonical quantization of non-commutative holonomies in 2 + 1 loop quantum gravity, JHEP 10 (2011) 036 [arXiv:1105.0439] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    D. Pranzetti, Turaev-Viro amplitudes from 2 + 1 Loop Quantum Gravity, Phys. Rev. D 89 (2014) 084058 [arXiv:1402.2384] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    J. Samuel, Is Barberos Hamiltonian formulation a gauge theory of Lorentzian gravity?, Class. Quant. Grav. 17 (2000) L141 [gr-qc/0005095] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    S. Alexandrov, On choice of connection in loop quantum gravity, Phys. Rev. D 65 (2002) 024011 [gr-qc/0107071] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. [31]

    M. Geiller and K. Noui, A note on the Holst action, the time gauge and the Barbero-Immirzi parameter, Gen. Rel. Grav. 45 (2013) 1733 [arXiv:1212.5064] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    M. Geiller and K. Noui, Testing the imposition of the Spin Foam Simplicity Constraints, Class. Quant. Grav. 29 (2012) 135008 [arXiv:1112.1965] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  33. [33]

    S. Alexandrov, M. Geiller and K. Noui, Spin Foams and Canonical Quantization, SIGMA 8 (2012) 055 [arXiv:1112.1961] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  34. [34]

    J.B. Achour, M. Geiller, K. Noui and C. Yu, Testing the role of the Barbero-Immirzi parameter and the choice of connection in Loop Quantum Gravity, Phys. Rev. D 91 (2015) 104016 [arXiv:1306.3241] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    J.B. Achour, M. Geiller, K. Noui and C. Yu, Spectra of geometric operators in three-dimensional loop quantum gravity: From discrete to continuous, Phys. Rev. D 89 (2014) 064064 [arXiv:1306.3246] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    E. Frodden, M. Geiller, K. Noui and A. Perez, Black Hole Entropy from complex Ashtekar variables, Europhys. Lett. 107 (2014) 10005 [arXiv:1212.4060] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    E. Frodden, M. Geiller, K. Noui and A. Perez, Statistical Entropy of a BTZ Black Hole from Loop Quantum Gravity, JHEP 05 (2013) 139 [arXiv:1212.4473] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. [38]

    D. Pranzetti, Geometric temperature and entropy of quantum isolated horizons, Phys. Rev. D 89 (2014) 104046 [arXiv:1305.6714] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    N. Bodendorfer, A. Stottmeister and A. Thurn, Loop quantum gravity without the Hamiltonian constraint, Class. Quant. Grav. 30 (2013) 082001 [arXiv:1203.6525] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. [40]

    N. Bodendorfer and Y. Neiman, Imaginary action, spinfoam asymptotics and thetransplanckianregime of loop quantum gravity, Class. Quant. Grav. 30 (2013) 195018 [arXiv:1303.4752] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. [41]

    Y. Neiman, On-shell actions with lightlike boundary data, arXiv:1212.2922 [INSPIRE].

  42. [42]

    Y. Neiman, Imaginary part of the gravitational action at asymptotic boundaries and horizons, Phys. Rev. D 88 (2013) 024037 [arXiv:1305.2207] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    Y. Neiman, The imaginary part of the gravity action and black hole entropy, JHEP 04 (2013) 071 [arXiv:1301.7041] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. [44]

    M. Han, Black Hole Entropy in Loop Quantum Gravity, Analytic Continuation and Dual Holography, arXiv:1402.2084 [INSPIRE].

  45. [45]

    M. Geiller and K. Noui, Near-Horizon Radiation and Self-Dual Loop Quantum Gravity, Europhys. Lett. 105 (2014) 60001 [arXiv:1402.4138] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    E. Witten, Analytic Continuation Of Chern-Simons Theory, arXiv:1001.2933 [INSPIRE].

  47. [47]

    M.V. Berry and C.J. Howls, Hyperasymptotics, Proc. R. Soc. London A 430 (1990) 653.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  48. [48]

    A. Ghosh, K. Noui and A. Perez, Statistics, holography and black hole entropy in loop quantum gravity, Phys. Rev. D 89 (2014) 084069 [arXiv:1309.4563] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    R.M. Kashaev, The Hyperbolic volume of knots from quantum dilogarithm, Lett. Math. Phys. 39 (1997) 269 [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  50. [50]

    A. Ghosh and A. Perez, Black hole entropy and isolated horizons thermodynamics, Phys. Rev. Lett. 107 (2011) 241301 [arXiv:1107.1320] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    E. Frodden, A. Ghosh and A. Perez, Quasilocal first law for black hole thermodynamics, Phys. Rev. D 87 (2013) 121503 [arXiv:1110.4055] [INSPIRE].

    ADS  Google Scholar 

  52. [52]

    K. Lochan and C. Vaz, Statistical analysis of entropy correction from topological defects in Loop Black Holes, Phys. Rev. D 86 (2012) 044035 [arXiv:1205.3974] [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    A. Ashtekar, New Variables for Classical and Quantum Gravity, Phys. Rev. Lett. 57 (1986) 2244 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karim Noui.

Additional information

ArXiv ePrint: 1406.6021

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jibril, B.A., Mouchet, A. & Noui, K. Analytic continuation of black hole entropy in Loop Quantum Gravity. J. High Energ. Phys. 2015, 145 (2015). https://doi.org/10.1007/JHEP06(2015)145

Download citation

Keywords

  • Models of Quantum Gravity
  • Black Holes