Measurement of the time-dependent CP asymmetries in B 0s  → J/ψK 0S


The first measurement of decay-time-dependent CP asymmetries in the decay B 0s  → J/ψK 0S and an updated measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({B}_{\mathrm{s}}^0\to J/\psi {K}_{\mathrm{S}}^0\right)/\mathrm{\mathcal{B}}\left({B}^0\to J/\psi {K}_{\mathrm{S}}^0\right) \) are presented. The results are obtained using data corresponding to an integrated luminosity of 3.0 fb−1 of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of 7 and 8 TeV. The results on the CP asymmetries are

$$ \begin{array}{l}{\mathcal{A}}_{\Delta \Gamma}\left({B}_s^0\to J/\psi {K}_{\mathrm{S}}^0\right)=0.49{\pm}_{0.65}^{0.77}\left(\mathrm{stat}\right)\pm 0.06\left(\mathrm{syst}\right),\hfill \\ {}{C}_{\mathrm{dir}}\left({B}_s^0\to J/\psi {K}_{\mathrm{S}}^0\right)=-0.28\pm 0.41\left(\mathrm{stat}\right)\pm 0.08\left(\mathrm{syst}\right),\hfill \\ {}{S}_{\mathrm{mix}}\left({B}_s^0\to J/\psi {K}_{\mathrm{S}}^0\right)=-0.08\pm 0.40\left(\mathrm{stat}\right)\pm 0.08\left(\mathrm{syst}\right).\hfill \end{array} $$

The ratio \( \mathrm{\mathcal{B}}\left({B}_{\mathrm{s}}^0\to J/\psi {K}_{\mathrm{S}}^0\right)/\mathrm{\mathcal{B}}\left({B}^0\to J/\psi {K}_{\mathrm{S}}^0\right) \) is measured to be

$$ 0.0431\pm 0.0017\left(\mathrm{stat}\right)\pm 0.0012\left(\mathrm{syst}\right)\pm 0.0025\left({f}_s/{f}_d\right), $$

where the last uncertainty is due to the knowledge of the B 0s and B 0 production fractions.

A preprint version of the article is available at ArXiv.


  1. [1]

    S. Faller, M. Jung, R. Fleischer and T. Mannel, The golden modes B 0J/ψK S,L in the era of precision flavour physics, Phys. Rev. D 79 (2009) 014030 [arXiv:0809.0842] [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    K. De Bruyn, R. Fleischer and P. Koppenburg, Extracting γ and penguin topologies through CP-violation in B 0 s  → J/ψK S , Eur. Phys. J. C 70 (2010) 1025 [arXiv:1010.0089] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    K. De Bruyn and R. Fleischer, A roadmap to control penguin effects in B 0 d  → J/ψK 0S and B 0 s  → J/ψϕ, JHEP 03 (2015) 145 [arXiv:1412.6834] [INSPIRE].

    Article  Google Scholar 

  4. [4]

    I.I.Y. Bigi and A.I. Sanda, Notes on the observability of CP-violations in B decays, Nucl. Phys. B 193 (1981) 85 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    Heavy Flavor Averaging Group (HFAG) collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].

  8. [8]

    LHCb collaboration, Measurement of CP violation in B 0 → J/ψK 0 S decays, arXiv:1503.07089 [INSPIRE].

  9. [9]

    R. Fleischer, Extracting γ from B (s/d) → J/ψK 0S and B (d/s) → D +(d/s) D (d/s) , Eur. Phys. J. C 10 (1999) 299 [hep-ph/9903455] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    CDF collaboration, T. Aaltonen et al., Observation of B 0 s  → J/ψK ∗ 0(892) and B 0 s  → J/ψK 0 S decays, Phys. Rev. D 83 (2011) 052012 [arXiv:1102.1961] [INSPIRE].

  11. [11]

    LHCb collaboration, Measurement of the effective B 0 s  → J/ψK 0 S lifetime, Nucl. Phys. B 873 (2013) 275 [arXiv:1304.4500] [INSPIRE].

  12. [12]

    K. De Bruyn et al., Branching ratio measurements of B s decays, Phys. Rev. D 86 (2012) 014027 [arXiv:1204.1735] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    LHCb collaboration, Measurement of the fragmentation fraction ratio f s /f d and its dependence on B meson kinematics, JHEP 04 (2013) 001 [arXiv:1301.5286] [INSPIRE].

  14. [14]

    LHCb collaboration, Updated average f s /f d b-hadron production fraction ratio for 7 TeV pp collisions, LHCb-CONF-2013-011 (2013).

  15. [15]

    LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].

  16. [16]

    LHCb collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022 [arXiv:1412.6352] [INSPIRE].

  17. [17]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  18. [18]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  19. [19]

    LHCb collaboration, Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047 [INSPIRE].

  20. [20]

    D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.

  23. [23]

    Geant4 collaboration, S. Agostinelli et al., Geant4: A simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

  24. [24]

    LHCb collaboration, The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE].

  25. [25]

    M. Feindt, A neural Bayesian estimator for conditional probability densities, physics/0402093 [INSPIRE].

  26. [26]

    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C38 (2014) 090001.

  27. [27]

    W.D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Meth. A 552 (2005) 566 [physics/0503191] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    M. Pivk and F.R. Le Diberder, SPlot: A statistical tool to unfold data distributions, Nucl. Instrum. Meth. A 555 (2005) 356 [physics/0402083] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    LHCb collaboration, Opposite-side flavour tagging of B mesons at the LHCb experiment, Eur. Phys. J. C 72 (2012) 2022 [arXiv:1202.4979] [INSPIRE].

  30. [30]

    LHCb collaboration, Optimization and calibration of the same-side kaon tagging algorithm using hadronic B 0 s decays in 2011 data, LHCb-CONF-2012-033 (2012).

  31. [31]

    D. Martínez Santos and F. Dupertuis, Mass distributions marginalized over per-event errors, Nucl. Instrum. Meth. A 764 (2014) 150 [arXiv:1312.5000] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    H.G. Moser and A. Roussarie, Mathematical methods for \( {B}^0-{\overline{B}}^0 \) oscillation analyses, Nucl. Instrum. Meth. A 384 (1997) 491 [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    LHCb collaboration, Measurement of CP-violation and the B 0 s meson decay width difference with B 0 s  → J/ψK + K and B 0 s  → J/ψπ + π decays, Phys. Rev. D 87 (2013) 112010 [arXiv:1304.2600] [INSPIRE].

  34. [34]

    T.M. Karbach, G. Raven and M. Schiller, Decay time integrals in neutral meson mixing and their efficient evaluation, arXiv:1407.0748 [INSPIRE].

  35. [35]

    LHCb collaboration, Measurement of the \( {\overline{B}}^0-{B}^0 \) and \( {\overline{B}}_s^0-{B}_s^0 \) production asymmetries in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 739 (2014) 218 [arXiv:1408.0275] [INSPIRE].

  36. [36]

    BaBar collaboration, B. Aubert et al., Measurement of time-dependent CP asymmetry in \( {B}^0\to c\overline{c}{K}^{\left(\ast \right)0} \) decays, Phys. Rev. D 79 (2009) 072009 [arXiv:0902.1708] [INSPIRE].

  37. [37]

    I. Adachi et al., Precise measurement of the CP-violation parameter sin 2ϕ 1 in \( {B}^0\to \left(c\overline{c}\right){K}^0 \) decays, Phys. Rev. Lett. 108 (2012) 171802 [arXiv:1201.4643] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    G.J. Feldman and R.D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    T.M. Karbach, Feldman-Cousins confidence levels - toy MC method, arXiv:1109.0714 [INSPIRE].

  40. [40]

    T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information