Ultraspinning limits and super-entropic black holes

  • Robie A. Hennigar
  • David Kubizňák
  • Robert B. Mann
  • Nathan MusokeEmail author
Open Access
Regular Article - Theoretical Physics


By employing the new ultraspinning limit we construct novel classes of black holes with non-compact event horizons and finite horizon area and study their thermo-dynamics. Our ultraspinning limit can be understood as a simple generating technique that consists of three steps: i) transforming the known rotating AdS black hole solution to a special coordinate system that rotates (in a given 2-plane) at infinity ii) boosting this rotation to the speed of light iii) compactifying the corresponding azimuthal direction. In so doing we qualitatively change the structure of the spacetime since it is no longer pos-sible to return to a frame that does not rotate at infinity. The obtained black holes have non-compact horizons with topology of a sphere with two punctures. The entropy of some of these exceeds the maximal bound implied by the reverse isoperimetric inequality, such black holes are super-entropic.


Black Holes in String Theory Black Holes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.W. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972) 152 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    R. Emparan and H.S. Reall, A rotating black ring solution in five-dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    G.J. Galloway and R. Schoen, A generalization of Hawkings black hole topology theorem to higher dimensions, Commun. Math. Phys. 266 (2006) 571 [gr-qc/0509107] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    L. Vanzo, Black holes with unusual topology, Phys. Rev. D 56 (1997) 6475 [gr-qc/9705004] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    R.B. Mann, Pair production of topological anti-de Sitter black holes, Class. Quant. Grav. 14 (1997) L109 [gr-qc/9607071] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    J.P.S. Lemos, Cylindrical black hole in general relativity, Phys. Lett. B 353 (1995) 46 [gr-qc/9404041] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional space-times, Phys. Rev. D 54 (1996) 4891 [gr-qc/9609065] [INSPIRE].ADSGoogle Scholar
  8. [8]
    R.B. Mann, Topological black holes: outside looking in, Annals Israel Phys. Soc. 13 (1997) 311 [gr-qc/9709039] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    P. Figueras and S. Tunyasuvunakool, Black rings in global anti-de Sitter space, JHEP 03 (2015) 149 [arXiv:1412.5680] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  10. [10]
    M.M. Caldarelli, R. Emparan and M.J. Rodriguez, Black rings in (anti)-de Sitter space, JHEP 11 (2008) 011 [arXiv:0806.1954] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    D. Birmingham, Topological black holes in anti-de Sitter space, Class. Quant. Grav. 16 (1999) 1197 [hep-th/9808032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Gnecchi, K. Hristov, D. Klemm, C. Toldo and O. Vaughan, Rotating black holes in 4d gauged supergravity, JHEP 01 (2014) 127 [arXiv:1311.1795] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    D. Klemm, Four-dimensional black holes with unusual horizons, Phys. Rev. D 89 (2014) 084007 [arXiv:1401.3107] [INSPIRE].ADSGoogle Scholar
  14. [14]
    R.A. Hennigar, D. Kubiznak and R.B. Mann, Super-entropic black holes, arXiv:1411.4309 [INSPIRE].
  15. [15]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    R. Emparan and R.C. Myers, Instability of ultra-spinning black holes, JHEP 09 (2003) 025 [hep-th/0308056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J. Armas and N.A. Obers, Blackfolds in (anti)-de Sitter backgrounds, Phys. Rev. D 83 (2011) 084039 [arXiv:1012.5081] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M.M. Caldarelli et al., Vorticity in holographic fluids, PoS(CORFU2011) 076 [arXiv:1206.4351] [INSPIRE].
  20. [20]
    N. Altamirano, D. Kubiznak, R.B. Mann and Z. Sherkatghanad, Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume, Galaxies 2 (2014) 89 [arXiv:1401.2586] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    M. Cvetič, G.W. Gibbons, D. Kubiznak and C.N. Pope, Black hole enthalpy and an entropy inequality for the thermodynamic volume, Phys. Rev. D 84 (2011) 024037 [arXiv:1012.2888] [INSPIRE].ADSGoogle Scholar
  22. [22]
    B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einsteins equations, Commun. Math. Phys. 10 (1968) 280 [INSPIRE].zbMATHGoogle Scholar
  23. [23]
    D. Klemm, Rotating black branes wrapped on Einstein spaces, JHEP 11 (1998) 019 [hep-th/9811126] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    S.W. Hawking, C.J. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    B. Carter, Global structure of the Kerr family of gravitational fields, Phys. Rev. 174 (1968) 1559 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    E. Hackmann, C. Lammerzahl, V. Kagramanova and J. Kunz, Analytical solution of the geodesic equation in Kerr-(anti-) de Sitter space-times, Phys. Rev. D 81 (2010) 044020 [arXiv:1009.6117] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    D. Kastor, S. Ray and J. Traschen, Enthalpy and the mechanics of AdS black holes, Class. Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    V.P. Frolov and D. Kubiznak, Higher-dimensional black holes: hidden symmetries and separation of variables, Class. Quant. Grav. 25 (2008) 154005 [arXiv:0802.0322] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    Z.-W. Chong, M. Cvetič, H. Lü and C.N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    A. Ashtekar and A. Magnon, Asymptotically anti-de Sitter space-times, Class. Quant. Grav. 1 (1984) L39 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    A. Ashtekar and S. Das, Asymptotically anti-de Sitter space-times: conserved quantities, Class. Quant. Grav. 17 (2000) L17 [hep-th/9911230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    S. Das and R.B. Mann, Conserved quantities in Kerr-anti-de Sitter space-times in various dimensions, JHEP 08 (2000) 033 [hep-th/0008028] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    G.W. Gibbons, H. Lü, D.N. Page and C.N. Pope, Rotating black holes in higher dimensions with a cosmological constant, Phys. Rev. Lett. 93 (2004) 171102 [hep-th/0409155] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G.W. Gibbons, H. Lü, D.N. Page and C.N. Pope, The general Kerr-de Sitter metrics in all dimensions, J. Geom. Phys. 53 (2005) 49 [hep-th/0404008] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    W. Chen, H. Lü and C.N. Pope, General Kerr-NUT-AdS metrics in all dimensions, Class. Quant. Grav. 23 (2006) 5323 [hep-th/0604125] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    G.W. Gibbons, M.J. Perry and C.N. Pope, The first law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22 (2005) 1503 [hep-th/0408217] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    D. Kubizňák and V.P. Frolov, Hidden symmetry of higher dimensional Kerr-NUT-AdS spacetimes, Class. Quant. Grav. 24 (2007) F1 [gr-qc/0610144] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    D. Kubizňák, Hidden symmetries of higher-dimensional rotating black holes, arXiv:0809.2452 [INSPIRE].
  40. [40]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, New horizons for black holes and branes, JHEP 04 (2010) 046 [arXiv:0912.2352] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    J. Armas and M. Blau, New geometries for black hole horizons, arXiv:1504.01393 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Robie A. Hennigar
    • 1
  • David Kubizňák
    • 1
    • 2
  • Robert B. Mann
    • 1
  • Nathan Musoke
    • 2
    Email author
  1. 1.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada
  2. 2.Perimeter InstituteWaterlooCanada

Personalised recommendations