Advertisement

Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam

  • The OPERA collaboration
  • N. Agafonova
  • A. Aleksandrov
  • A. Anokhina
  • S. Aoki
  • A. Ariga
  • T. Ariga
  • D. Bender
  • A. Bertolin
  • I. Bodnarchuk
  • C. Bozza
  • R. Brugnera
  • A. Buonaura
  • S. Buontempo
  • B. Büttner
  • M. Chernyavsky
  • A. Chukanov
  • L. Consiglio
  • N. D’Ambrosio
  • G. De Lellis
  • M. De Serio
  • P. Del Amo Sanchez
  • A. Di Crescenzo
  • D. Di Ferdinando
  • N. Di Marco
  • S. Dmitrievski
  • M. Dracos
  • D. Duchesneau
  • S. Dusini
  • T. Dzhatdoev
  • J. Ebert
  • A. Ereditato
  • R. A. Fini
  • T. Fukuda
  • G. Galati
  • A. Garfagnini
  • J. Goldberg
  • Y. Gornushkin
  • G. Grella
  • A. M. Guler
  • C. Gustavino
  • C. Hagner
  • T. Hara
  • A. Hollnagel
  • B. Hosseini
  • K. Ishiguro
  • K. Jakovcic
  • C. Jollet
  • C. Kamiscioglu
  • M. Kamiscioglu
  • J. H. Kim
  • S. H. Kim
  • N. Kitagawa
  • B. Klicek
  • K. Kodama
  • M. Komatsu
  • U. Kose
  • I. Kreslo
  • A. Lauria
  • A. Ljubicic
  • A. Longhin
  • A. Malgin
  • M. Malenica
  • G. Mandrioli
  • T. Matsuo
  • V. Matveev
  • N. Mauri
  • E. Medinaceli
  • A. Meregaglia
  • S. Mikado
  • P. Monacelli
  • M. C. Montesi
  • K. Morishima
  • M. T. Muciaccia
  • N. Naganawa
  • T. Naka
  • M. Nakamura
  • T. Nakano
  • Y. Nakatsuka
  • K. Niwa
  • S. Ogawa
  • T. Omura
  • K. Ozaki
  • A. PaoloniEmail author
  • L. Paparella
  • B. D. Park
  • I. G. Park
  • L. Pasqualini
  • A. PastoreEmail author
  • L. Patrizii
  • H. Pessard
  • D. Podgrudkov
  • N. Polukhina
  • M. Pozzato
  • F. Pupilli
  • M. Roda
  • T. Roganova
  • H. Rokujo
  • G. Rosa
  • O. Ryazhskaya
  • O. Sato
  • A. Schembri
  • I. Shakirianova
  • T. Shchedrina
  • A. Sheshukov
  • H. Shibuya
  • T. Shiraishi
  • G. Shoziyoev
  • S. Simone
  • M. Sioli
  • C. Sirignano
  • G. Sirri
  • M. Spinetti
  • L. Stanco
  • N. Starkov
  • S. M. Stellacci
  • M. Stipcevic
  • P. Strolin
  • S. Takahashi
  • M. Tenti
  • F. Terranova
  • V. Tioukov
  • S. Tufanli
  • P. Vilain
  • M. Vladymyrov
  • L. Votano
  • J. L. Vuilleumier
  • G. Wilquet
  • B. Wonsak
  • C. S. Yoon
  • S. Zemskova
Open Access
Regular Article - Experimental Physics

Abstract

The OPERA experiment, exposed to the CERN to Gran Sasso ν μ beam, collected data from 2008 to 2012. Four oscillated ν τ Charged Current interaction candidates have been detected in appearance mode, which are consistent with ν μ → ν τ oscillations at the atmospheric Δm 2 within the “standard” three-neutrino framework. In this paper, the OPERA ν τ appearance results are used to derive limits on the mixing parameters of a massive sterile neutrino.

Keywords

Oscillation Neutrino Detectors and Telescopes Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    OPERA collaboration, R. Acquafredda et al., The OPERA experiment in the CERN to Gran Sasso neutrino beam, 2009 JINST 4 P04018 [INSPIRE].
  2. [2]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].Google Scholar
  3. [3]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    OPERA collaboration, N. Agafonova et al., Observation of a first ν τ candidate in the OPERA experiment in the CNGS beam, Phys. Lett. B 691 (2010) 138 [arXiv:1006.1623] [INSPIRE].ADSGoogle Scholar
  5. [5]
    OPERA collaboration, N. Agafonova et al., New results on ν μ → ν τ appearance with the OPERA experiment in the CNGS beam, JHEP 11 (2013) 036 [Erratum ibid. 04 (2014) 014] [arXiv:1308.2553] [INSPIRE].
  6. [6]
    OPERA collaboration, N. Agafonova et al., Evidence for ν μ → ν τ appearance in the CNGS neutrino beam with the OPERA experiment, Phys. Rev. D 89 (2014) 051102 [arXiv:1401.2079] [INSPIRE].ADSGoogle Scholar
  7. [7]
    OPERA collaboration, N. Agafonova et al., Observation of τ neutrino appearance in the CNGS beam with the OPERA experiment, Prog. Theor. Exp. Phys. 2014 (2014) 101C01 [arXiv:1407.3513] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of \( {\overline{\nu}}_e \) appearance in a \( {\overline{\nu}}_{\mu } \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].Google Scholar
  9. [9]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Improved search for \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) oscillations in the MiniBooNE experiment, Phys. Rev. Lett. 110 (2013) 161801 [arXiv:1207.4809] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    G. Mention et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M.A. Acero, C. Giunti and M. Laveder, Limits on νe and \( {\overline{\nu}}_e \) disappearance from Gallium and reactor experiments, Phys. Rev. D 78 (2008) 073009 [arXiv:0711.4222] [INSPIRE].ADSGoogle Scholar
  12. [12]
    C. Giunti and M. Laveder, Statistical significance of the Gallium anomaly, Phys. Rev. C 83 (2011) 065504 [arXiv:1006.3244] [INSPIRE].ADSGoogle Scholar
  13. [13]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, [arXiv:1502.01589] [INSPIRE].
  14. [14]
    NOMAD collaboration, P. Astier et al., Final NOMAD results on ν μν τ and ν eν τ oscillations including a new search for ν τ appearance using hadronic τ decays, Nucl. Phys. B 611 (2001) 3 [hep-ex/0106102] [INSPIRE].ADSGoogle Scholar
  15. [15]
    CHORUS collaboration, E. Eskut et al., Final results on νμ → ντ oscillation from the CHORUS experiment, Nucl. Phys. B 793 (2008) 326 [arXiv:0710.3361] [INSPIRE].ADSGoogle Scholar
  16. [16]
    N. Agafonova et al., The detection of neutrino interactions in the emulsion/lead target of the OPERA experiment, 2009 JINST 4 P06020 [arXiv:0903.2973] [INSPIRE].
  17. [17]
    K. Elsener, The CERN neutrino beam to Gran Sasso (NGS): conceptual technical design, CERN-98-02, CERN, Geneva Switzerland (1998) [INFN-AE-98-05].
  18. [18]
    R. Bailey et al., The CERN Neutrino beam to Gran Sasso (NGS): addendum to report no. CERN-98-02, INFN-AE-98-05, CERN-SL-99-034(DI), CERN, Geneva Switzerland (1999) [INFN-AE-99-05].
  19. [19]
    CNGS neutrino flux calculations webpage, http://www.mi.infn.it/∼psala/Icarus/cngs.html.
  20. [20]
    OPERA collaboration, A. Anokhina et al., Emulsion sheet doublets as interface trackers for the OPERA experiment, 2008 JINST 3 P07005 [arXiv:0804.1985] [INSPIRE].
  21. [21]
    OPERA collaboration, N. Agafonova et al., Procedure for short-lived particle detection in the OPERA experiment and its application to charm decays, Eur. Phys. J. C 74 (2014) 2986 [arXiv:1404.4357] [INSPIRE].Google Scholar
  22. [22]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].Google Scholar
  23. [23]
    J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile neutrino oscillations: the global picture, JHEP 05 (2013) 050 [arXiv:1303.3011] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Super-Kamiokande collaboration, K. Abe et al., Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande, Phys. Rev. D 91 (2015) 052019 [arXiv:1410.2008] [INSPIRE].ADSGoogle Scholar
  25. [25]
    F. Dydak et al., A search for νμ oscillations in the Δm 2 range 0.3 eV2 to 90 eV2, Phys. Lett. B 134 (1984) 281 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    I.E. Stockdale et al., Limits on muon neutrino oscillations in the mass range 55 eV2 < Δm 2 < 800 eV2, Phys. Rev. Lett. 52 (1984) 1384 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    MiniBooNE and SciBooNE collaborations, G. Cheng et al., Dual baseline search for muon antineutrino disappearance at 0.1 eV2 < Δm 2 < 100 eV2, Phys. Rev. D 86 (2012) 052009 [arXiv:1208.0322] [INSPIRE].Google Scholar
  28. [28]
    MINOS collaboration, P. Adamson et al., Search for sterile neutrino mixing in the MINOS long baseline experiment, Phys. Rev. D 81 (2010) 052004 [arXiv:1001.0336] [INSPIRE].
  29. [29]
    MINOS collaboration, P. Adamson et al., Active to sterile neutrino mixing limits from neutral-current interactions in MINOS, Phys. Rev. Lett. 107 (2011) 011802 [arXiv:1104.3922] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A.M. Dziewonski and D.L. Anderson, Preliminary reference earth model, Phys. Earth Planet. Interiors 25 (1981) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    F.D. Stacey, Physics of the earth, 2nd ed., Wiley, U.S.A. (1977).Google Scholar
  34. [34]
    S. Dusini et al., Search for sterile neutrino mixing in the νμ → ντ appearance channel with the OPERA detector, http://operaweb.lngs.infn.it/Opera/publicnotes/OPERA-public-note-175.pdf.
  35. [35]
    G.J. Feldman and R.D. Cousins, A unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • The OPERA collaboration
  • N. Agafonova
    • 1
  • A. Aleksandrov
    • 2
  • A. Anokhina
    • 3
  • S. Aoki
    • 4
  • A. Ariga
    • 5
  • T. Ariga
    • 5
  • D. Bender
    • 6
  • A. Bertolin
    • 7
  • I. Bodnarchuk
    • 8
  • C. Bozza
    • 9
  • R. Brugnera
    • 7
    • 10
  • A. Buonaura
    • 2
    • 11
  • S. Buontempo
    • 2
  • B. Büttner
    • 12
  • M. Chernyavsky
    • 13
  • A. Chukanov
    • 8
  • L. Consiglio
    • 2
  • N. D’Ambrosio
    • 14
  • G. De Lellis
    • 2
    • 11
  • M. De Serio
    • 15
    • 16
  • P. Del Amo Sanchez
    • 17
  • A. Di Crescenzo
    • 2
  • D. Di Ferdinando
    • 18
  • N. Di Marco
    • 14
  • S. Dmitrievski
    • 8
  • M. Dracos
    • 19
  • D. Duchesneau
    • 17
  • S. Dusini
    • 7
  • T. Dzhatdoev
    • 3
  • J. Ebert
    • 12
  • A. Ereditato
    • 5
  • R. A. Fini
    • 16
  • T. Fukuda
    • 20
  • G. Galati
    • 2
    • 11
  • A. Garfagnini
    • 9
  • J. Goldberg
    • 22
  • Y. Gornushkin
    • 8
  • G. Grella
    • 9
  • A. M. Guler
    • 6
  • C. Gustavino
    • 23
  • C. Hagner
    • 12
  • T. Hara
    • 4
  • A. Hollnagel
    • 12
  • B. Hosseini
    • 2
    • 11
  • K. Ishiguro
    • 24
  • K. Jakovcic
    • 25
  • C. Jollet
    • 19
  • C. Kamiscioglu
    • 6
  • M. Kamiscioglu
    • 6
  • J. H. Kim
    • 26
  • S. H. Kim
    • 26
    • 33
  • N. Kitagawa
    • 24
  • B. Klicek
    • 25
  • K. Kodama
    • 27
  • M. Komatsu
    • 24
  • U. Kose
    • 7
    • 34
  • I. Kreslo
    • 5
  • A. Lauria
    • 2
    • 11
  • A. Ljubicic
    • 25
  • A. Longhin
    • 28
  • A. Malgin
    • 1
  • M. Malenica
    • 25
  • G. Mandrioli
    • 18
  • T. Matsuo
    • 20
  • V. Matveev
    • 1
  • N. Mauri
    • 18
    • 21
  • E. Medinaceli
    • 7
    • 10
  • A. Meregaglia
    • 19
  • S. Mikado
    • 30
  • P. Monacelli
    • 23
  • M. C. Montesi
    • 2
    • 11
  • K. Morishima
    • 24
  • M. T. Muciaccia
    • 15
    • 16
  • N. Naganawa
    • 24
  • T. Naka
    • 24
  • M. Nakamura
    • 24
  • T. Nakano
    • 24
  • Y. Nakatsuka
    • 24
  • K. Niwa
    • 24
  • S. Ogawa
    • 20
  • T. Omura
    • 24
  • K. Ozaki
    • 4
  • A. Paoloni
    • 28
    Email author
  • L. Paparella
    • 15
    • 16
  • B. D. Park
    • 26
    • 35
  • I. G. Park
    • 26
  • L. Pasqualini
    • 18
    • 21
  • A. Pastore
    • 16
    Email author
  • L. Patrizii
    • 18
  • H. Pessard
    • 17
  • D. Podgrudkov
    • 3
  • N. Polukhina
    • 13
  • M. Pozzato
    • 18
    • 21
  • F. Pupilli
    • 14
  • M. Roda
    • 7
    • 10
  • T. Roganova
    • 3
  • H. Rokujo
    • 24
  • G. Rosa
    • 23
    • 29
  • O. Ryazhskaya
    • 1
  • O. Sato
    • 24
  • A. Schembri
    • 14
  • I. Shakirianova
    • 1
  • T. Shchedrina
    • 2
  • A. Sheshukov
    • 8
  • H. Shibuya
    • 20
  • T. Shiraishi
    • 24
  • G. Shoziyoev
    • 3
  • S. Simone
    • 15
    • 16
  • M. Sioli
    • 18
    • 21
  • C. Sirignano
    • 7
    • 10
  • G. Sirri
    • 18
  • M. Spinetti
    • 28
  • L. Stanco
    • 7
  • N. Starkov
    • 13
  • S. M. Stellacci
    • 9
  • M. Stipcevic
    • 25
  • P. Strolin
    • 2
    • 11
  • S. Takahashi
    • 4
  • M. Tenti
    • 18
  • F. Terranova
    • 28
    • 31
  • V. Tioukov
    • 2
  • S. Tufanli
    • 5
  • P. Vilain
    • 32
  • M. Vladymyrov
    • 13
  • L. Votano
    • 28
  • J. L. Vuilleumier
    • 5
  • G. Wilquet
    • 32
  • B. Wonsak
    • 12
  • C. S. Yoon
    • 26
  • S. Zemskova
    • 8
  1. 1.INR - Institute for Nuclear Research of the Russian Academy of SciencesMoscowRussia
  2. 2.INFN Sezione di NapoliNapoliItaly
  3. 3.SINP MSU - Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  4. 4.Kobe UniversityKobeJapan
  5. 5.Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP)University of BernBernSwitzerland
  6. 6.METU - Middle East Technical UniversityAnkaraTurkey
  7. 7.INFN Sezione di PadovaPadovaItaly
  8. 8.JINR - Joint Institute for Nuclear ResearchDubnaRussia
  9. 9.Dipartimento di Fisica dell’Università di Salerno and “Gruppo Collegato” INFNFiscianoItaly
  10. 10.Dipartimento di Fisica e Astronomia dell’Università di PadovaPadovaItaly
  11. 11.Dipartimento di Fisica dell’Università Federico II di NapoliNapoliItaly
  12. 12.Hamburg UniversityHamburgGermany
  13. 13.LPI - Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia
  14. 14.INFN - Laboratori Nazionali del Gran SassoAssergiItaly
  15. 15.Dipartimento di Fisica dell’Università di BariBariItaly
  16. 16.INFN Sezione di BariBariItaly
  17. 17.LAPP, Université Savoie Mont Blanc, CNRS/IN2P3Annecy-le-VieuxFrance
  18. 18.INFN Sezione di BolognaBolognaItaly
  19. 19.IPHC, Université de Strasbourg, CNRS/IN2P3StrasbourgFrance
  20. 20.Toho UniversityFunabashiJapan
  21. 21.Dipartimento di Fisica e Astronomia dell’Università di BolognaBolognaItaly
  22. 22.Department of PhysicsTechnionIsrael
  23. 23.INFN Sezione di RomaRomaItaly
  24. 24.Nagoya UniversityNagoyaJapan
  25. 25.IRB - Rudjer Boskovic InstituteZagrebCroatia
  26. 26.Gyeongsang National UniversityJinjuSouth Korea
  27. 27.Aichi University of EducationKariyaJapan
  28. 28.INFN - Laboratori Nazionali di Frascati dell’INFNFrascatiItaly
  29. 29.Dipartimento di Fisica dell’Università di Roma “La Sapienza”RomaItaly
  30. 30.Nihon UniversityNarashinoJapan
  31. 31.Dipartimento di Fisica dell’Università di Milano-BicoccaMilanoItaly
  32. 32.IIHE, Université Libre de BruxellesBrusselsBelgium
  33. 33.Kyungpook National UniversityDaeguSouth Korea
  34. 34.CERNGenevaSwitzerland
  35. 35.Samsung Changwon Hospital, SKKUChangwonSouth Korea

Personalised recommendations