Leading order finite size effects with spins for inspiralling compact binaries

  • Michele LeviEmail author
  • Jan Steinhoff
Open Access
Regular Article - Theoretical Physics


The leading order finite size effects due to spin, namely that of the cubic and quartic in spin interactions, are derived for the first time for generic compact binaries via the effective field theory for gravitating spinning objects. These corrections enter at the third and a half and fourth post-Newtonian orders, respectively, for rapidly rotating compact objects. Hence, we complete the leading order finite size effects with spin up to the fourth post-Newtonian accuracy. We arrive at this by augmenting the point particle effective action with new higher dimensional nonminimal coupling worldline operators, involving higher-order derivatives of the gravitational field, and introducing new Wilson coefficients, corresponding to constants, which describe the octupole and hexadecapole deformations of the object due to spin. These Wilson coefficients are fixed to unity in the black hole case. The nonminimal coupling worldline operators enter the action with the electric and magnetic components of the Weyl tensor of even and odd parity, coupled to even and odd worldline spin tensors, respectively. Moreover, the non relativistic gravitational field decomposition, which we employ, demonstrates a coupling hierarchy of the gravito-magnetic vector and the Newtonian scalar, to the odd and even in spin operators, respectively, which extends that of minimal coupling. This observation is useful for the construction of the Feynman diagrams, and provides an instructive analogy between the leading order spin-orbit and cubic in spin interactions, and between the leading order quadratic and quartic in spin interactions.


Classical Theories of Gravity Effective field theories Renormalization Regularization and Renormalons Black Holes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
  2. [2]
  3. [3]
  4. [4]
    L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev. Rel. 17 (2014) 2 [arXiv:1310.1528] [INSPIRE].CrossRefzbMATHGoogle Scholar
  5. [5]
    K. Yagi and N. Yunes, Love can be Tough to Measure, Phys. Rev. D 89 (2014) 021303 [arXiv:1310.8358] [INSPIRE].ADSGoogle Scholar
  6. [6]
    J.E. McClintock et al., Measuring the Spins of Accreting Black Holes, Class. Quant. Grav. 28 (2011) 114009 [arXiv:1101.0811] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    T. Damour, P. Jaranowski and G. Schäfer, Nonlocal-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems, Phys. Rev. D 89 (2014) 064058 [arXiv:1401.4548] [INSPIRE].ADSGoogle Scholar
  8. [8]
    P.D. D’Eath, Interaction of two black holes in the slow-motion limit, Phys. Rev. D 12 (1975) 2183 [INSPIRE].ADSGoogle Scholar
  9. [9]
    K.S. Thorne and J.B. Hartle, Laws of motion and precession for black holes and other bodies, Phys. Rev. D 31 (1984) 1815 [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    B.M. Barker and R.F. O’Connell, Gravitational Two-Body Problem with Arbitrary Masses, Spins and Quadrupole Moments, Phys. Rev. D 12 (1975) 329 [INSPIRE].ADSGoogle Scholar
  11. [11]
    E. Poisson, Gravitational waves from inspiraling compact binaries: The Quadrupole moment term, Phys. Rev. D 57 (1998) 5287 [gr-qc/9709032] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R.A. Porto and I.Z. Rothstein, Next to Leading Order Spin(1)Spin(1) Effects in the Motion of Inspiralling Compact Binaries, Phys. Rev. D 78 (2008) 044013 [arXiv:0804.0260] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J. Steinhoff, S. Hergt and G. Schäfer, Spin-squared Hamiltonian of next-to-leading order gravitational interaction, Phys. Rev. D 78 (2008) 101503 [arXiv:0809.2200] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S. Hergt and G. Schäfer, Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance, Phys. Rev. D 78 (2008) 124004 [arXiv:0809.2208] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Hergt, J. Steinhoff and G. Schäfer, Reduced Hamiltonian for next-to-leading order Spin-Squared Dynamics of General Compact Binaries, Class. Quant. Grav. 27 (2010) 135007 [arXiv:1002.2093] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S. Hergt and G. Schäfer, Higher-order-in-spin interaction Hamiltonians for binary black holes from source terms of Kerr geometry in approximate ADM coordinates, Phys. Rev. D 77 (2008) 104001 [arXiv:0712.1515] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Steinhoff and D. Puetzfeld, Influence of internal structure on the motion of test bodies in extreme mass ratio situations, Phys. Rev. D 86 (2012) 044033 [arXiv:1205.3926] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Levi and J. Steinhoff, An effective field theory for gravitating spinning objects in the post-Newtonian scheme, arXiv:1501.0495 [INSPIRE].
  19. [19]
    W.D. Goldberger and I.Z. Rothstein, An Effective field theory of gravity for extended objects, Phys. Rev. D 73 (2006) 104029 [hep-th/0409156] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    W.D. Goldberger, Les Houches lectures on effective field theories and gravitational radiation, hep-ph/0701129 [INSPIRE].
  21. [21]
    R.A. Porto, Post-Newtonian corrections to the motion of spinning bodies in NRGR, Phys. Rev. D 73 (2006) 104031 [gr-qc/0511061] [INSPIRE].ADSGoogle Scholar
  22. [22]
    B. Kol and M. Smolkin, Non-Relativistic Gravitation: From Newton to Einstein and Back, Class. Quant. Grav. 25 (2008) 145011 [arXiv:0712.4116] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    B. Kol, M. Levi and M. Smolkin, Comparing space+time decompositions in the post-Newtonian limit, Class. Quant. Grav. 28 (2011) 145021 [arXiv:1011.6024] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    M. Levi, Next to Leading Order gravitational Spin1-Spin2 coupling with Kaluza-Klein reduction, Phys. Rev. D 82 (2010) 064029 [arXiv:0802.1508] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Levi, Next to Leading Order gravitational Spin-Orbit coupling in an Effective Field Theory approach, Phys. Rev. D 82 (2010) 104004 [arXiv:1006.4139] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Levi, Binary dynamics from spin1-spin2 coupling at fourth post-Newtonian order, Phys. Rev. D 85 (2012) 064043 [arXiv:1107.4322] [INSPIRE].ADSGoogle Scholar
  27. [27]
    D. Bini, T. Damour and G. Faye, Effective action approach to higher-order relativistic tidal interactions in binary systems and their effective one body description, Phys. Rev. D 85 (2012) 124034 [arXiv:1202.3565] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A.J. Hanson and T. Regge, The Relativistic Spherical Top, Annals Phys. 87 (1974) 498 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    I. Bailey and W. Israel, Lagrangian Dynamics of Spinning Particles and Polarized Media in General Relativity, Commun.Math.Phys. 42 (1975) 65.ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    T. Damour and G. Schäfer, Redefinition of position variables and the reduction of higher order Lagrangians, J. Math. Phys. 32 (1991) 127 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    M. Levi and J. Steinhoff, Equivalence of ADM Hamiltonian and Effective Field Theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspirals, JCAP 12 (2014) 003 [arXiv:1408.5762] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R.O. Hansen, Multipole moments of stationary space-times, J. Math. Phys. 15 (1974) 46 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    F.D. Ryan, Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments, Phys. Rev. D 52 (1995) 5707 [INSPIRE].ADSGoogle Scholar
  34. [34]
    W.G. Laarakkers and E. Poisson, Quadrupole moments of rotating neutron stars, Astrophys. J. 512 (1999) 282 [gr-qc/9709033] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G. Pappas and T.A. Apostolatos, Revising the multipole moments of numerical spacetimes and its consequences, Phys. Rev. Lett. 108 (2012) 231104 [arXiv:1201.6067] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K. Yagi, K. Kyutoku, G. Pappas, N. Yunes and T.A. Apostolatos, Effective No-Hair Relations for Neutron Stars and Quark Stars: Relativistic Results, Phys. Rev. D 89 (2014) 124013 [arXiv:1403.6243] [INSPIRE].ADSGoogle Scholar
  37. [37]
    K. Yagi and N. Yunes, I-Love-Q, Science 341 (2013) 365 [arXiv:1302.4499] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K. Yagi and N. Yunes, I-Love-Q Relations in Neutron Stars and their Applications to Astrophysics, Gravitational Waves and Fundamental Physics, Phys. Rev. D 88 (2013) 023009 [arXiv:1303.1528] [INSPIRE].ADSGoogle Scholar
  39. [39]
    V. Vaidya, Gravitational spin Hamiltonians from the S matrix, Phys. Rev. D 91 (2015) 024017 [arXiv:1410.5348] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Marsat, Cubic order spin effects in the dynamics and gravitational wave energy flux of compact object binaries, Class. Quant. Grav. 32 (2015) 085008 [arXiv:1411.4118] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Université Pierre et Marie Curie-Paris VI, CNRS-UMR 7095, Institut d’Astrophysique de ParisParisFrance
  2. 2.Sorbonne Universités, Institut Lagrange de ParisParisFrance
  3. 3.Max-Planck-Institute for Gravitational Physics - Albert-Einstein-InstitutePotsdam-GolmGermany
  4. 4.Centro Multidisciplinar de Astrofisica, Instituto Superior TecnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations