Complementarity of LHC and EDMs for exploring Higgs CP violation

Abstract

We analyze the constraints on a CP-violating, flavor conserving, two Higgs doublet model from the measurements of Higgs properties and from the search for heavy Higgs bosons at LHC, and show that the stronger limits typically come from the heavy Higgs search channels. The limits on CP violation arising from the Higgs sector measurements are complementary to those from EDM measurements. Combining all current constraints from low energy to colliders, we set generic upper bounds on the CP violating angle which parametrizes the CP odd component in the 126 GeV Higgs boson.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    ATLAS collaboration, Constraints on new phenomena via Higgs coupling measurements with the ATLAS detector, ATLAS-CONF-2014-010, ATLAS-COM-CONF-2014-011 [INSPIRE].

  5. [5]

    C.-Y. Chen and S. Dawson, Exploring two Higgs doublet models through Higgs production, Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    B. Coleppa, F. Kling and S. Su, Constraining type II 2HDM in light of LHC Higgs searches, JHEP 01 (2014) 161 [arXiv:1305.0002] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    K. Cheung, J.S. Lee and P.-Y. Tseng, Higgcision in the two-Higgs doublet models, JHEP 01 (2014) 085 [arXiv:1310.3937] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    J. Shu and Y. Zhang, Impact of a CP-violating Higgs sector: from LHC to baryogenesis, Phys. Rev. Lett. 111 (2013) 091801 [arXiv:1304.0773] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    S. Inoue, M.J. Ramsey-Musolf and Y. Zhang, CP-violating phenomenology of flavor conserving two Higgs doublet models, Phys. Rev. D 89 (2014) 115023 [arXiv:1403.4257] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    D. Fontes, J.C. Romão, R. Santos and J.P. Silva, Large pseudoscalar Yukawa couplings in the complex 2HDM, arXiv:1502.01720 [INSPIRE].

  13. [13]

    L. Lavoura and J.P. Silva, Fundamental CP-violating quantities in a SU(2) × U(1) model with many Higgs doublets, Phys. Rev. D 50 (1994) 4619 [hep-ph/9404276] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    A. Barroso, P.M. Ferreira, R. Santos and J.P. Silva, Probing the scalar-pseudoscalar mixing in the 125 GeV Higgs particle with current data, Phys. Rev. D 86 (2012) 015022 [arXiv:1205.4247] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    CMS collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV, arXiv:1411.3441 [INSPIRE].

  16. [16]

    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 [INSPIRE].

  17. [17]

    R. Harnik, A. Martin, T. Okui, R. Primulando and F. Yu, Measuring CP-violation in hτ + τ at colliders, Phys. Rev. D 88 (2013) 076009 [arXiv:1308.1094] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    F. Bishara et al., Probing CP-violation in hγγ with converted photons, JHEP 04 (2014) 084 [arXiv:1312.2955] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    Y. Chen, A. Falkowski, I. Low and R. Vega-Morales, New observables for CP-violation in Higgs decays, Phys. Rev. D 90 (2014) 113006 [arXiv:1405.6723] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    M.J. Dolan, P. Harris, M. Jankowiak and M. Spannowsky, Constraining CP-violating Higgs sectors at the LHC using gluon fusion, Phys. Rev. D 90 (2014) 073008 [arXiv:1406.3322] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    S. Berge, W. Bernreuther and S. Kirchner, Determination of the Higgs CP mixing angle in the tau decay channels at the LHC including the Drell-Yan background, Eur. Phys. J. C 74 (2014) 3164 [arXiv:1408.0798] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    X.-G. He, G.-N. Li and Y.-J. Zheng, Probing Higgs boson CP properties with \( t\overline{t}H \) at the LHC and the 100 TeV pp collider, arXiv:1501.00012 [INSPIRE].

  23. [23]

    S. Bar-Shalom, D. Atwood, G. Eilam, R.R. Mendel and A. Soni, Large tree level CP-violation in e + e \( t\overline{t}{H}^0 \) in the two-Higgs-doublet model, Phys. Rev. D 53 (1996) 1162 [hep-ph/9508314] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    D. Atwood, S. Bar-Shalom, G. Eilam and A. Soni, CP violation in top physics, Phys. Rept. 347 (2001) 1 [hep-ph/0006032] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    S. Ipek, Perturbative analysis of the electron electric dipole moment and CP-violation in two-Higgs-doublet models, Phys. Rev. D 89 (2014) 073012 [arXiv:1310.6790] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    K. Cheung, J.S. Lee, E. Senaha and P.-Y. Tseng, Confronting Higgcision with electric dipole moments, JHEP 06 (2014) 149 [arXiv:1403.4775] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    L. Bian, T. Liu and J. Shu, Post-ACME2013 CP-violation in Higgs physics and electroweak baryogenesis, arXiv:1411.6695 [INSPIRE].

  28. [28]

    M. Carena, J.R. Ellis, S. Mrenna, A. Pilaftsis and C.E.M. Wagner, Collider probes of the MSSM Higgs sector with explicit CP-violation, Nucl. Phys. B 659 (2003) 145 [hep-ph/0211467] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    P. Bechtle et al., HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    A. Arbey, J. Ellis, R.M. Godbole and F. Mahmoudi, Exploring CP-violation in the MSSM, Eur. Phys. J. C 75 (2015) 85 [arXiv:1410.4824] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    B. Li and C.E.M. Wagner, CP-odd component of the lightest neutral Higgs boson in the MSSM, arXiv:1502.02210 [INSPIRE].

  32. [32]

    A. Chakraborty et al., 125 GeV Higgs signal at the LHC in the CP-violating MSSM, Phys. Rev. D 90 (2014) 055005 [arXiv:1301.2745] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Complementarity between nonstandard Higgs boson searches and precision Higgs boson measurements in the MSSM, Phys. Rev. D 91 (2015) 035003 [arXiv:1410.4969] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    C.-Y. Chen, S. Dawson and M. Sher, Heavy Higgs searches and constraints on two Higgs doublet models, Phys. Rev. D 88 (2013) 015018 [arXiv:1305.1624] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    N. Craig, J. Galloway and S. Thomas, Searching for signs of the second Higgs doublet, arXiv:1305.2424 [INSPIRE].

  36. [36]

    A. Freitas and P. Schwaller, Higgs CP properties from early LHC data, Phys. Rev. D 87 (2013) 055014 [arXiv:1211.1980] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7 + 8 TeV LHC, Eur. Phys. J. C 73 (2013) 2512 [arXiv:1303.6591] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    W.-F. Chang, W.-P. Pan and F. Xu, Effective gauge-Higgs operators analysis of new physics associated with the Higgs boson, Phys. Rev. D 88 (2013) 033004 [arXiv:1303.7035] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    A.J. Buras, G. Isidori and P. Paradisi, EDMs versus CPV in B s,d mixing in two Higgs doublet models with MFV, Phys. Lett. B 694 (2011) 402 [arXiv:1007.5291] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    J.M. Cline, K. Kainulainen and M. Trott, Electroweak baryogenesis in two Higgs doublet models and B meson anomalies, JHEP 11 (2011) 089 [arXiv:1107.3559] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  41. [41]

    M. Jung and A. Pich, Electric dipole moments in two-Higgs-doublet models, JHEP 04 (2014) 076 [arXiv:1308.6283] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].

  43. [43]

    https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections.

  44. [44]

    LHC Higgs Cross Section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].

  45. [45]

    http://tiger.web.psi.ch/grids/.

  46. [46]

    F. Maltoni, G. Ridolfi and M. Ubiali, b-initiated processes at the LHC: a reappraisal, JHEP 07 (2012) 022 [Erratum ibid. 04 (2013) 095] [arXiv:1203.6393] [INSPIRE].

  47. [47]

    ATLAS collaboration, Search for Higgs bosons in two-Higgs-doublet models in the HWWeνμν channel with the ATLAS detector, ATLAS-CONF-2013-027, ATLAS-COM-CONF-2013-005 [INSPIRE].

  48. [48]

    CMS collaboration, Search for a standard-model-like Higgs boson with a mass in the range 145 to 1000 GeV at the LHC, Eur. Phys. J. C 73 (2013) 2469 [arXiv:1304.0213] [CMS-HIG-12-034] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    ATLAS collaboration, Search for a high-mass Higgs boson in the HWWlνlν decay channel with the ATLAS detector using 21 fb −1 of proton-proton collision data, ATLAS-CONF-2013-067, ATLAS-COM-CONF-2013-082 [INSPIRE].

  50. [50]

    CMS collaboration, Search for a pseudoscalar boson A decaying into a Z and an h boson in the \( \ell \ell b\overline{b} \) final state, CMS-PAS-HIG-14-011 [INSPIRE].

  51. [51]

    ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Lett. B 744 (2015) 163 [arXiv:1502.04478] [INSPIRE].

    ADS  Google Scholar 

  52. [52]

    CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions, JHEP 10 (2014) 160 [arXiv:1408.3316] [CMS-HIG-13-021] [INSPIRE].

    Google Scholar 

  53. [53]

    A. Djouadi and J. Quevillon, The MSSM Higgs sector at a high M SUSY : reopening the low tan β regime and heavy Higgs searches, JHEP 10 (2013) 028 [arXiv:1304.1787] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, arXiv:1412.8662 [CMS-HIG-14-009] [INSPIRE].

  55. [55]

    ATLAS collaboration, Observation and measurement of Higgs boson decays to WW * with the ATLAS detector, arXiv:1412.2641 [INSPIRE].

  56. [56]

    ATLAS collaboration, Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2014-009 [INSPIRE].

  57. [57]

    ATLAS collaboration, Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 112015 [arXiv:1408.7084] [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    ATLAS collaboration, Search for the bb decay of the standard model Higgs boson in associated W/ZH production with the ATLAS detector, ATLAS-CONF-2013-079 [INSPIRE].

  59. [59]

    ATLAS collaboration, Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector, JHEP 04 (2015) 117 [arXiv:1501.04943] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    J. Engel, M.J. Ramsey-Musolf and U. van Kolck, Electric dipole moments of nucleons, nuclei and atoms: the standard model and beyond, Prog. Part. Nucl. Phys. 71 (2013) 21 [arXiv:1303.2371] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    C.-Y. Chen, Projections for two Higgs doublet models at the LHC and ILC: a Snowmass white paper, arXiv:1308.3487 [INSPIRE].

  62. [62]

    P.M. Ferreira, J.F. Gunion, H.E. Haber and R. Santos, Probing wrong-sign Yukawa couplings at the LHC and a future linear collider, Phys. Rev. D 89 (2014) 115003 [arXiv:1403.4736] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    F. Mahmoudi and O. Stål, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    A. Wahab El Kaffas, P. Osland and O.M. Ogreid, Constraining the two-Higgs-doublet-model parameter space, Phys. Rev. D 76 (2007) 095001 [arXiv:0706.2997] [INSPIRE].

    ADS  MATH  Google Scholar 

  65. [65]

    W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, The oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  66. [66]

    H.-J. He, N. Polonsky and S.-f. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004 [hep-ph/0102144] [INSPIRE].

    ADS  Google Scholar 

  67. [67]

    H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model. III. The CP-conserving limit, custodial symmetry and the oblique parameters S, T, U, Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188] [INSPIRE].

    ADS  Google Scholar 

  68. [68]

    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].

    ADS  Google Scholar 

  69. [69]

    Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].

    Google Scholar 

  70. [70]

    M. Davier and W.J. Marciano, The theoretical prediction for the muon anomalous magnetic moment, Ann. Rev. Nucl. Part. Sci. 54 (2004) 115 [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    T. Abe, J. Hisano, T. Kitahara and K. Tobioka, Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models, JHEP 01 (2014) 106 [arXiv:1311.4704] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    D. Bowser-Chao, D. Chang and W.-Y. Keung, Electron electric dipole moment from CP-violation in the charged Higgs sector, Phys. Rev. Lett. 79 (1997) 1988 [hep-ph/9703435] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    V. Ilisie, New Barr-Zee contributions to (g − 2) μ in two-Higgs-doublet models, arXiv:1502.04199 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chien-Yi Chen.

Additional information

ArXiv ePrint: 1503.01114

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, CY., Dawson, S. & Zhang, Y. Complementarity of LHC and EDMs for exploring Higgs CP violation. J. High Energ. Phys. 2015, 56 (2015). https://doi.org/10.1007/JHEP06(2015)056

Download citation

Keywords

  • Higgs Physics
  • Beyond Standard Model
  • CP violation