Advertisement

Towards precise predictions for Higgs-boson production in the MSSM

  • E. Bagnaschi
  • R.V. Harlander
  • S. Liebler
  • H. Mantler
  • P. Slavich
  • A. Vicini
Open Access
Article

Abstract

We study the production of scalar and pseudoscalar Higgs bosons via gluon fusion and bottom-quark annihilation in the MSSM. Relying on the NNLO-QCD calculation implemented in the public code SusHi, we provide precise predictions for the Higgs-production cross section in six benchmark scenarios compatible with the LHC searches. We also provide a detailed discussion of the sources of theoretical uncertainty in our calculation. We examine the dependence of the cross section on the renormalization and factorization scales, on the precise definition of the Higgs-bottom coupling and on the choice of PDFs, as well as the uncertainties associated to our incomplete knowledge of the SUSY contributions through NNLO. In particular, a potentially large uncertainty originates from uncomputed higher-order QCD corrections to the bottom-quark contributions to gluon fusion.

Keywords

Higgs Physics Supersymmetric Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier, C. Mariotti, G. Passarino and R. Tanaka eds., Handbook of LHC Higgs cross sections: 1. Inclusive observables, CERN-2011-002 [arXiv:1101.0593] [INSPIRE].
  4. [4]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier, C. Mariotti, G. Passarino and R. Tanaka eds., Handbook of LHC Higgs cross sections: 2. Differential distributions, CERN-2012-002 [arXiv:1201.3084] [INSPIRE].
  5. [5]
    LHC Higgs Cross Section Working Group collaboration, S. Heinemeyer, C. Mariotti, G. Passarino and R. Tanaka eds., Handbook of LHC Higgs cross sections: 3. Higgs properties, CERN-2013-004 [arXiv:1307.1347] [INSPIRE].
  6. [6]
    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].ADSGoogle Scholar
  7. [7]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].ADSGoogle Scholar
  8. [8]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].ADSGoogle Scholar
  10. [10]
    R. Harlander and P. Kant, Higgs production and decay: analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].ADSGoogle Scholar
  11. [11]
    C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].ADSGoogle Scholar
  12. [12]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay, JHEP 01 (2007) 021 [hep-ph/0611266] [INSPIRE].ADSGoogle Scholar
  13. [13]
    R. Bonciani, G. Degrassi and A. Vicini, Scalar particle contribution to Higgs production via gluon fusion at NLO, JHEP 11 (2007) 095 [arXiv:0709.4227] [INSPIRE].ADSGoogle Scholar
  14. [14]
    R.V. Harlander, Virtual corrections to ggH to two loops in the heavy top limit, Phys. Lett. B 492 (2000) 74 [hep-ph/0007289] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Catani, D. de Florian and M. Grazzini, Higgs production in hadron collisions: soft and virtual QCD corrections at NNLO, JHEP 05 (2001) 025 [hep-ph/0102227] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R.V. Harlander and W.B. Kilgore, Soft and virtual corrections to ppH + X at NNLO, Phys. Rev. D 64 (2001) 013015 [hep-ph/0102241] [INSPIRE].ADSGoogle Scholar
  17. [17]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].ADSGoogle Scholar
  18. [18]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].ADSGoogle Scholar
  19. [19]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at next-to-next-to-leading order QCD: virtual corrections, Phys. Lett. B 679 (2009) 467 [arXiv:0907.2997] [INSPIRE].ADSGoogle Scholar
  22. [22]
    R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Pak, M. Rogal and M. Steinhauser, Virtual three-loop corrections to Higgs boson production in gluon fusion for finite top quark mass, Phys. Lett. B 679 (2009) 473 [arXiv:0907.2998] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].ADSGoogle Scholar
  25. [25]
    R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. Idilbi, X.-d. Ji, J.-P. Ma and F. Yuan, Threshold resummation for Higgs production in effective field theory, Phys. Rev. D 73 (2006) 077501 [hep-ph/0509294] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Idilbi, X.-d. Ji and F. Yuan, Resummation of threshold logarithms in effective field theory for DIS, Drell-Yan and Higgs production, Nucl. Phys. B 753 (2006) 42 [hep-ph/0605068] [INSPIRE].ADSGoogle Scholar
  30. [30]
    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-group improved prediction for Higgs production at hadron colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [INSPIRE].ADSGoogle Scholar
  32. [32]
    V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys. B 752 (2006) 173 [hep-ph/0603041] [INSPIRE].ADSGoogle Scholar
  33. [33]
    R.D. Ball, M. Bonvini, S. Forte, S. Marzani and G. Ridolfi, Higgs production in gluon fusion beyond NNLO, Nucl. Phys. B 874 (2013) 746 [arXiv:1303.3590] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    S. Buehler and A. Lazopoulos, Scale dependence and collinear subtraction terms for Higgs production in gluon fusion at N3LO, JHEP 10 (2013) 096 [arXiv:1306.2223] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C. Anastasiou et al., Higgs boson gluon-fusion production at threshold in N3LO QCD, arXiv:1403.4616 [INSPIRE].
  36. [36]
    A. Djouadi and P. Gambino, Leading electroweak correction to Higgs boson production at proton colliders, Phys. Rev. Lett. 73 (1994) 2528 [hep-ph/9406432] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Djouadi, P. Gambino and B.A. Kniehl, Two loop electroweak heavy fermion corrections to Higgs boson production and decay, Nucl. Phys. B 523 (1998) 17 [hep-ph/9712330] [INSPIRE].ADSGoogle Scholar
  38. [38]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [INSPIRE].ADSGoogle Scholar
  39. [39]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Master integrals for the two-loop light fermion contributions to ggH and H → γγ, Phys. Lett. B 600 (2004) 57 [hep-ph/0407162] [INSPIRE].ADSGoogle Scholar
  40. [40]
    G. Degrassi and F. Maltoni, Two-loop electroweak corrections to Higgs production at hadron colliders, Phys. Lett. B 600 (2004) 255 [hep-ph/0407249] [INSPIRE].ADSGoogle Scholar
  41. [41]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO electroweak corrections to Higgs boson production at hadron colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NNLO computational techniques: the cases H → γγ and Hgg, Nucl. Phys. B 811 (2009) 182 [arXiv:0809.3667] [INSPIRE].ADSGoogle Scholar
  43. [43]
    R. Bonciani, G. Degrassi and A. Vicini, On the generalized harmonic polylogarithms of one complex variable, Comput. Phys. Commun. 182 (2011) 1253 [arXiv:1007.1891] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  44. [44]
    C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [arXiv:0811.3458] [INSPIRE].ADSGoogle Scholar
  45. [45]
    S. Dawson, A. Djouadi and M. Spira, QCD corrections to SUSY Higgs production: the role of squark loops, Phys. Rev. Lett. 77 (1996) 16 [hep-ph/9603423] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Mühlleitner and M. Spira, Higgs boson production via gluon fusion: squark loops at NLO QCD, Nucl. Phys. B 790 (2008) 1 [hep-ph/0612254] [INSPIRE].ADSGoogle Scholar
  47. [47]
    C. Anastasiou, S. Beerli and A. Daleo, The two-loop QCD amplitude ggh, H in the minimal supersymmetric standard model, Phys. Rev. Lett. 100 (2008) 241806 [arXiv:0803.3065] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Mühlleitner, H. Rzehak and M. Spira, SUSY-QCD corrections to MSSM Higgs boson production via gluon fusion, PoS(RADCOR2009)043 [arXiv:1001.3214] [INSPIRE].
  49. [49]
    R.V. Harlander and M. Steinhauser, Hadronic Higgs production and decay in supersymmetry at next-to-leading order, Phys. Lett. B 574 (2003) 258 [hep-ph/0307346] [INSPIRE].ADSGoogle Scholar
  50. [50]
    R.V. Harlander and M. Steinhauser, Supersymmetric Higgs production in gluon fusion at next-to-leading order, JHEP 09 (2004) 066 [hep-ph/0409010] [INSPIRE].ADSGoogle Scholar
  51. [51]
    G. Degrassi and P. Slavich, On the NLO QCD corrections to Higgs production and decay in the MSSM, Nucl. Phys. B 805 (2008) 267 [arXiv:0806.1495] [INSPIRE].ADSGoogle Scholar
  52. [52]
    R.V. Harlander and F. Hofmann, Pseudo-scalar Higgs production at next-to-leading order SUSY-QCD, JHEP 03 (2006) 050 [hep-ph/0507041] [INSPIRE].ADSGoogle Scholar
  53. [53]
    G. Degrassi, S. Di Vita and P. Slavich, NLO QCD corrections to pseudoscalar Higgs production in the MSSM, JHEP 08 (2011) 128 [arXiv:1107.0914] [INSPIRE].ADSGoogle Scholar
  54. [54]
    G. Degrassi and P. Slavich, NLO QCD bottom corrections to Higgs boson production in the MSSM, JHEP 11 (2010) 044 [arXiv:1007.3465] [INSPIRE].ADSGoogle Scholar
  55. [55]
    R.V. Harlander, F. Hofmann and H. Mantler, Supersymmetric Higgs production in gluon fusion, JHEP 02 (2011) 055 [arXiv:1012.3361] [INSPIRE].ADSGoogle Scholar
  56. [56]
    G. Degrassi, S. Di Vita and P. Slavich, On the NLO QCD corrections to the production of the heaviest neutral Higgs scalar in the MSSM, Eur. Phys. J. C 72 (2012) 2032 [arXiv:1204.1016] [INSPIRE].ADSGoogle Scholar
  57. [57]
    K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser and W.A. Bardeen, Effective QCD interactions of CP odd Higgs bosons at three loops, Nucl. Phys. B 535 (1998) 3 [hep-ph/9807241] [INSPIRE].ADSGoogle Scholar
  58. [58]
    R.V. Harlander and W.B. Kilgore, Production of a pseudoscalar Higgs boson at hadron colliders at next-to-next-to leading order, JHEP 10 (2002) 017 [hep-ph/0208096] [INSPIRE].ADSGoogle Scholar
  59. [59]
    C. Anastasiou and K. Melnikov, Pseudoscalar Higgs boson production at hadron colliders in NNLO QCD, Phys. Rev. D 67 (2003) 037501 [hep-ph/0208115] [INSPIRE].ADSGoogle Scholar
  60. [60]
    F. Caola and S. Marzani, Finite fermion mass effects in pseudoscalar Higgs production via gluon-gluon fusion, Phys. Lett. B 698 (2011) 275 [arXiv:1101.3975] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A. Pak, M. Rogal and M. Steinhauser, Production of scalar and pseudo-scalar Higgs bosons to next-to-next-to-leading order at hadron colliders, JHEP 09 (2011) 088 [arXiv:1107.3391] [INSPIRE].ADSGoogle Scholar
  62. [62]
    R. Harlander and M. Steinhauser, Effects of SUSY QCD in hadronic Higgs production at next-to-next-to-leading order, Phys. Rev. D 68 (2003) 111701 [hep-ph/0308210] [INSPIRE].ADSGoogle Scholar
  63. [63]
    A. Pak, M. Steinhauser and N. Zerf, Towards Higgs boson production in gluon fusion to NNLO in the MSSM, Eur. Phys. J. C 71 (2011) 1602 [Erratum ibid. C 72 (2012) 2182] [arXiv:1012.0639] [INSPIRE].ADSGoogle Scholar
  64. [64]
    A. Pak, M. Steinhauser and N. Zerf, Supersymmetric next-to-next-to-leading order corrections to Higgs boson production in gluon fusion, JHEP 09 (2012) 118 [arXiv:1208.1588] [INSPIRE].ADSGoogle Scholar
  65. [65]
    M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the \( \overline{t} b{H}^{+} \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].ADSGoogle Scholar
  66. [66]
    J. Guasch, P. Häfliger and M. Spira, MSSM Higgs decays to bottom quark pairs revisited, Phys. Rev. D 68 (2003) 115001 [hep-ph/0305101] [INSPIRE].ADSGoogle Scholar
  67. [67]
    D. Noth and M. Spira, Higgs boson couplings to bottom quarks: two-loop supersymmetry-QCD corrections, Phys. Rev. Lett. 101 (2008) 181801 [arXiv:0808.0087] [INSPIRE].ADSGoogle Scholar
  68. [68]
    D. Noth and M. Spira, Supersymmetric Higgs Yukawa couplings to bottom quarks at next-to-next-to-leading order, JHEP 06 (2011) 084 [arXiv:1001.1935] [INSPIRE].ADSGoogle Scholar
  69. [69]
    L. Mihaila and C. Reisser, \( O\left({\alpha}_s^2\right) \) corrections to fermionic Higgs decays in the MSSM, JHEP 08 (2010) 021 [arXiv:1007.0693] [INSPIRE].ADSGoogle Scholar
  70. [70]
    S. Dittmaier, M. Krämer and M. Spira, Higgs radiation off bottom quarks at the Tevatron and the CERN LHC, Phys. Rev. D 70 (2004) 074010 [hep-ph/0309204] [INSPIRE].ADSGoogle Scholar
  71. [71]
    S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth, Exclusive Higgs boson production with bottom quarks at hadron colliders, Phys. Rev. D 69 (2004) 074027 [hep-ph/0311067] [INSPIRE].ADSGoogle Scholar
  72. [72]
    D. Dicus, T. Stelzer, Z. Sullivan and S. Willenbrock, Higgs boson production in association with bottom quarks at next-to-leading order, Phys. Rev. D 59 (1999) 094016 [hep-ph/9811492] [INSPIRE].ADSGoogle Scholar
  73. [73]
    F. Maltoni, Z. Sullivan and S. Willenbrock, Higgs-boson production via bottom-quark fusion, Phys. Rev. D 67 (2003) 093005 [hep-ph/0301033] [INSPIRE].ADSGoogle Scholar
  74. [74]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].ADSGoogle Scholar
  75. [75]
    S. Dittmaier, M. Krämer, A. Mück and T. Schlüter, MSSM Higgs-boson production in bottom-quark fusion: electroweak radiative corrections, JHEP 03 (2007) 114 [hep-ph/0611353] [INSPIRE].ADSGoogle Scholar
  76. [76]
    S. Dawson, C.B. Jackson and P. Jaiswal, SUSY QCD corrections to Higgs-b production: is the Δb approximation accurate?, Phys. Rev. D 83 (2011) 115007 [arXiv:1104.1631] [INSPIRE].ADSGoogle Scholar
  77. [77]
    M. Spira, HIGLU: a program for the calculation of the total Higgs production cross-section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [INSPIRE].
  78. [78]
  79. [79]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].ADSGoogle Scholar
  80. [80]
    M. Grazzini, NNLO predictions for the Higgs boson signal in the HWWlνlν and HZZ → 4l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232][INSPIRE].ADSGoogle Scholar
  81. [81]
    M. Grazzini and H. Sargsyan, Heavy-quark mass effects in Higgs boson production at the LHC, JHEP 09 (2013) 129 [arXiv:1306.4581] [INSPIRE].ADSGoogle Scholar
  82. [82]
    C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Total cross-section for Higgs boson hadroproduction with anomalous standard model interactions, JHEP 12 (2011) 058 [arXiv:1107.0683] [INSPIRE].ADSGoogle Scholar
  83. [83]
  84. [84]
    E. Bagnaschi, G. Degrassi, P. Slavich and A. Vicini, Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM, JHEP 02 (2012) 088 [arXiv:1111.2854] [INSPIRE].ADSGoogle Scholar
  85. [85]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSGoogle Scholar
  86. [86]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSGoogle Scholar
  87. [87]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the standard model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE]; http://sushi.hepforge.org/.ADSGoogle Scholar
  88. [88]
    S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].ADSGoogle Scholar
  89. [89]
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].ADSGoogle Scholar
  90. [90]
    M. Carena, S. Heinemeyer, O. Stål, C.E.M. Wagner and G. Weiglein, MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle, Eur. Phys. J. C 73 (2013) 2552 [arXiv:1302.7033] [INSPIRE].ADSGoogle Scholar
  91. [91]
  92. [92]
    Tevatron Electroweak Working Group, CDF and D0 collaborations, Combination of CDF and D0 results on the mass of the top quark using up to 8.7 fb −1 at the Tevatron, arXiv:1305.3929 [INSPIRE].
  93. [93]
    J.H. Kühn, M. Steinhauser and C. Sturm, Heavy quark masses from sum rules in four-loop approximation, Nucl. Phys. B 778 (2007) 192 [hep-ph/0702103] [INSPIRE].ADSGoogle Scholar
  94. [94]
    K.G. Chetyrkin et al., Charm and bottom quark masses: an update, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110] [INSPIRE].ADSGoogle Scholar
  95. [95]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].ADSzbMATHGoogle Scholar
  96. [96]
    M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].ADSGoogle Scholar
  97. [97]
    S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].ADSGoogle Scholar
  98. [98]
    G. Degrassi, P. Slavich and F. Zwirner, On the neutral Higgs boson masses in the MSSM for arbitrary stop mixing, Nucl. Phys. B 611 (2001) 403 [hep-ph/0105096] [INSPIRE].ADSGoogle Scholar
  99. [99]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the \( O\left({\alpha}_t^2\right) \) two loop corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 631 (2002) 195 [hep-ph/0112177] [INSPIRE].ADSGoogle Scholar
  100. [100]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two loop sbottom corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 643 (2002) 79 [hep-ph/0206101] [INSPIRE].ADSGoogle Scholar
  101. [101]
    A. Dedes, G. Degrassi and P. Slavich, On the two-loop Yukawa corrections to the MSSM Higgs boson masses at large tan β, Nucl. Phys. B 672 (2003) 144 [hep-ph/0305127] [INSPIRE].ADSGoogle Scholar
  102. [102]
    S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the MSSM Higgs sector at O(α b α s), Eur. Phys. J. C 39 (2005) 465 [hep-ph/0411114] [INSPIRE].ADSGoogle Scholar
  103. [103]
    S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs sector of the complex MSSM at two-loop order: QCD contributions, Phys. Lett. B 652 (2007) 300 [arXiv:0705.0746] [INSPIRE].ADSGoogle Scholar
  104. [104]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].ADSGoogle Scholar
  105. [105]
    B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].ADSGoogle Scholar
  106. [106]
    S.P. Martin, Two loop effective potential for the minimal supersymmetric standard model, Phys. Rev. D 66 (2002) 096001 [hep-ph/0206136] [INSPIRE].ADSGoogle Scholar
  107. [107]
    S.P. Martin, Complete two loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 67 (2003) 095012 [hep-ph/0211366] [INSPIRE].ADSGoogle Scholar
  108. [108]
    S.P. Martin, Strong and Yukawa two-loop contributions to Higgs scalar boson self-energies and pole masses in supersymmetry, Phys. Rev. D 71 (2005) 016012 [hep-ph/0405022] [INSPIRE].ADSGoogle Scholar
  109. [109]
    S.P. Martin, Three-loop corrections to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 75 (2007) 055005 [hep-ph/0701051] [INSPIRE].ADSGoogle Scholar
  110. [110]
    R.V. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Higgs boson mass in supersymmetry to three loops, Phys. Rev. Lett. 100 (2008) 191602 [Erratum ibid. 101 (2008) 039901] [arXiv:0803.0672] [INSPIRE].ADSGoogle Scholar
  111. [111]
    P. Kant, R.V. Harlander, L. Mihaila and M. Steinhauser, Light MSSM Higgs boson mass to three-loop accuracy, JHEP 08 (2010) 104 [arXiv:1005.5709] [INSPIRE].ADSGoogle Scholar
  112. [112]
    ATLAS collaboration, Search for strongly produced superpartners in final states with two same sign leptons with the ATLAS detector using 21 fb − 1 of proton-proton collisions at \( \sqrt{s} \) = 8 TeV, ATLAS-CONF-2013-007 (2013) [INSPIRE].
  113. [113]
    ATLAS collaboration, Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at \( \sqrt{s} \) = 8 TeV proton-proton collisions using the ATLAS experiment, JHEP 10 (2013) 130 [arXiv:1308.1841] [INSPIRE].ADSGoogle Scholar
  114. [114]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb −1 of \( \sqrt{s} \) = 8 TeV proton-proton collision data, ATLAS-CONF-2013-047 (2013) [INSPIRE].
  115. [115]
    ATLAS collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets using 20.1 fb −1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-061 (2013) [INSPIRE].
  116. [116]
    ATLAS collaboration, Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-062 (2013) [INSPIRE].
  117. [117]
    ATLAS collaboration, Search for strongly produced supersymmetric particles in decays with two leptons at \( \sqrt{s} \) = 8 TeV, ATLAS-CONF-2013-089 (2013) [INSPIRE].
  118. [118]
    CMS collaboration, Search for supersymmetry in hadronic final states with missing transverse energy using the variables α T and b-quark multiplicity in pp collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 73 (2013) 2568 [arXiv:1303.2985][INSPIRE].ADSGoogle Scholar
  119. [119]
    CMS collaboration, Search for new physics in events with same-sign dileptons and jets in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 01 (2014) 163 [arXiv:1311.6736] [INSPIRE].Google Scholar
  120. [120]
    CMS collaboration, A search for anomalous production of events with three or more leptons using 19.5/fb of \( \sqrt{s} \) = 8 TeV LHC data, CMS-PAS-SUS-13-002 (2013).
  121. [121]
    CMS collaboration, Search for supersymmetry in pp collisions at \( \sqrt{s} \) = 8 TeV in events with three leptons and at least one b-tagged jet, CMS-PAS-SUS-13-008 (2013).
  122. [122]
    CMS collaboration, Search for supersymmetry in pp collisions at \( \sqrt{s} \) = 8 TeV in events with a single lepton, large jet multiplicity and multiple b jets, arXiv:1311.4937 [INSPIRE].
  123. [123]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, arXiv:1402.4770 [INSPIRE].
  124. [124]
    CMS collaboration, Search for supersymmetry using razor variables in events with b-jets in pp collisions at 8 TeV, CMS-PAS-SUS-13-004 (2013).
  125. [125]
    ATLAS collaboration, Search for direct top-squark pair production in final states with two leptons in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, arXiv:1403.4853 [INSPIRE].
  126. [126]
    CMS collaboration, Search for top-squark pair production in the single-lepton final state in pp collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE].ADSGoogle Scholar
  127. [127]
    CMS collaboration, Search for top squarks in multijet events with large missing momentum in proton-proton collisions at 8 TeV, CMS-PAS-SUS-13-015 (2013).
  128. [128]
    ATLAS collaboration, Search for pair-produced top squarks decaying into a charm quark and the lightest neutralinos with 20.3 fb −1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector at the LHC, ATLAS-CONF-2013-068 (2013).
  129. [129]
    CMS collaboration, Search for top squarks decaying to a charm quark and a neutralino in events with a jet and missing transverse momentum, CMS-PAS-SUS-13-009 (2014).
  130. [130]
    ATLAS collaboration, Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector, JHEP 10 (2013) 189 [arXiv:1308.2631] [INSPIRE].ADSGoogle Scholar
  131. [131]
    M. Spira, QCD effects in Higgs physics, Fortschr. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].zbMATHGoogle Scholar
  132. [132]
    R. Harlander, Supersymmetric Higgs production at the Large Hadron Collider, Eur. Phys. J. C 33 (2004) S454 [hep-ph/0311005] [INSPIRE].ADSGoogle Scholar
  133. [133]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSGoogle Scholar
  134. [134]
    C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].ADSGoogle Scholar
  135. [135]
    E. Boos and T. Plehn, Higgs boson production induced by bottom quarks, Phys. Rev. D 69 (2004) 094005 [hep-ph/0304034] [INSPIRE].ADSGoogle Scholar
  136. [136]
    K.G. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order \( {\alpha}_s^3 \), Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [INSPIRE].ADSGoogle Scholar
  137. [137]
    K. Melnikov and T. van Ritbergen, The three-loop relation between the \( \overline{\mathrm{MS}} \) and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].ADSGoogle Scholar
  138. [138]
    K.G. Chetyrkin, Quark mass anomalous dimension to \( O\left({\alpha}_S^4\right) \), Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].ADSGoogle Scholar
  139. [139]
    J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].ADSGoogle Scholar
  140. [140]
    J. Baglio and A. Djouadi, Higgs production at the LHC, JHEP 03 (2011) 055 [arXiv:1012.0530] [INSPIRE].ADSGoogle Scholar
  141. [141]
    M.I. Kotsky and O.I. Yakovlev, Resummation of double logarithms in the process H → γγ, Phys. Lett. B 418 (1998) 335 [hep-ph/9708485] [INSPIRE].ADSGoogle Scholar
  142. [142]
    R. Akhoury, H. Wang and O.I. Yakovlev, Resummation of large QCD logarithms in H →γγ, Phys. Rev. D 64 (2001) 113008 [hep-ph/0102105] [INSPIRE].ADSGoogle Scholar
  143. [143]
    L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].ADSGoogle Scholar
  144. [144]
    R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [INSPIRE].ADSGoogle Scholar
  145. [145]
    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].ADSGoogle Scholar
  146. [146]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSGoogle Scholar
  147. [147]
    F. Demartin, S. Forte, E. Mariani, J. Rojo and A. Vicini, Impact of parton distribution function and α s uncertainties on Higgs boson production in gluon fusion at hadron colliders, Phys. Rev. D 82 (2010) 014002 [arXiv:1004.0962] [INSPIRE].ADSGoogle Scholar
  148. [148]
    S. Alekhin et al., The PDF4LHC Working Group interim report, arXiv:1101.0536 [INSPIRE].
  149. [149]
    M. Botje et al., The PDF4LHC Working Group interim recommendations, arXiv:1101.0538 [INSPIRE].
  150. [150]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  151. [151]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions, Eur. Phys. J. C 70 (2010) 51 [arXiv:1007.2624] [INSPIRE].ADSGoogle Scholar
  152. [152]
    R.D. Ball et al., Impact of heavy quark masses on parton distributions and LHC phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • E. Bagnaschi
    • 1
    • 2
  • R.V. Harlander
    • 3
  • S. Liebler
    • 4
  • H. Mantler
    • 5
  • P. Slavich
    • 1
    • 2
  • A. Vicini
    • 6
  1. 1.LPTHE, UPMC Université Paris 06, Sorbonne UniversitésParisFrance
  2. 2.LPTHE, CNRSParisFrance
  3. 3.Fachbereich C, Bergische Universität WuppertalWuppertalGermany
  4. 4.Universität HamburgHamburgGermany
  5. 5.CERN, Theory DivisionGeneva 23Switzerland
  6. 6.Dipartimento di FisicaUniversità di Milano and INFN, Sezione di MilanoMilanoItaly

Personalised recommendations