Advertisement

Embedding inflation into the Standard Model — More evidence for classical scale invariance

  • Kristjan Kannike
  • Antonio Racioppi
  • Martti Raidal
Open Access
Article

Abstract

If cosmological inflation is due to a slowly rolling single inflation field taking trans-Planckian values as suggested by the BICEP2 measurement of primordial tensor modes in CMB, embedding inflation into the Standard Model challenges standard paradigm of effective field theories. Together with an apparent absence of Planck scale contributions to the Higgs mass and to the cosmological constant, BICEP2 provides further experimental evidence for the absence of large M P induced operators. We show that classical scale invariance — the paradigm that all fundamental scales in Nature are induced by quantum effects — solves the problem and allows for a remarkably simple scale-free Standard Model extension with inflaton without extending the gauge group. Due to trans-Planckian inflaton values and vevs, a dynamically induced Coleman-Weinberg-type inflaton potential of the model can predict tensor-to-scalar ratio r in a large range, converging around the prediction of chaotic m 2 ϕ 2 inflation for a large trans-Planckian value of the inflaton vev. Precise determination of r in future experiments will single out a unique scale-free inflation potential, allowing to test the proposed field-theoretic framework.

Keywords

Cosmology of Theories beyond the SM Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    BICEP2 collaboration, P.A.R. Ade et al., Detection of B-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].ADSGoogle Scholar
  3. [3]
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    V.F. Mukhanov and G.V. Chibisov, Quantum fluctuation and nonsingular universe (in Russian), JETP Lett. 33 (1981) 532 [INSPIRE].ADSGoogle Scholar
  6. [6]
    J.M. Bardeen, P.J. Steinhardt and M.S. Turner, Spontaneous creation of almost scaleFree density perturbations in an inflationary universe, Phys. Rev. D 28 (1983) 679 [INSPIRE].ADSGoogle Scholar
  7. [7]
    V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept. 215 (1992) 203 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    K.A. Olive, Inflation, Phys. Rept. 190 (1990) 307 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314 (1999) 1 [hep-ph/9807278] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    W.H. Kinney, TASI lectures on inflation, arXiv:0902.1529 [INSPIRE].
  11. [11]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [INSPIRE].
  12. [12]
    S. Mohanty and A. Nautiyal, Signature of Gibbons-Hawking temperature in the BICEP2 measurement of gravitational waves, arXiv:1404.2222 [INSPIRE].
  13. [13]
    D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    L. Boubekeur and D. Lyth, Hilltop inflation, JCAP 07 (2005) 010 [hep-ph/0502047] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N. Okada, V.N. Şenoğuz and Q. Shafi, Simple inflationary models in light of BICEP2: an update, arXiv:1403.6403 [INSPIRE].
  16. [16]
    D.H. Lyth, BICEP2, the curvature perturbation and supersymmetry, arXiv:1403.7323 [INSPIRE].
  17. [17]
    A. Kehagias and A. Riotto, Remarks about the tensor mode detection by the BICEP2 collaboration and the super-planckian excursions of the inflaton field, Phys. Rev. D 89 (2014) 101301 [arXiv:1403.4811] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S. Choudhury, A. Mazumdar and S. Pal, Low & high scale MSSM inflation, gravitational waves and constraints from Planck, JCAP 07 (2013) 041 [arXiv:1305.6398] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Choudhury and A. Mazumdar, An accurate bound on tensor-to-scalar ratio and the scale of inflation, Nucl. Phys. B 882 (2014) 386 [arXiv:1306.4496] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    S. Choudhury and A. Mazumdar, Reconstructing inflationary potential from BICEP2 and running of tensor modes, arXiv:1403.5549 [INSPIRE].
  21. [21]
    S. Antusch and D. Nolde, BICEP2 implications for single-field slow-roll inflation revisited, JCAP 05 (2014) 035 [arXiv:1404.1821] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    X. Calmet and V. Sanz, Excursion into quantum gravity via inflation, arXiv:1403.5100 [INSPIRE].
  23. [23]
    V. Branchina and E. Messina, Stability, Higgs boson mass and new physics, Phys. Rev. Lett. 111 (2013) 241801 [arXiv:1307.5193] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F.L. Bezrukov and M. Shaposhnikov, The standard model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    O. Lebedev, On stability of the electroweak vacuum and the Higgs portal, Eur. Phys. J. C 72 (2012) 2058 [arXiv:1203.0156] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    E. Gabrielli, M. Heikinheimo, K. Kannike, A. Racioppi, M. Raidal et al., Towards completing the standard model: vacuum stability, EWSB and dark matter, Phys. Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].ADSGoogle Scholar
  32. [32]
    P. Ko and W.-I. Park, Higgs-portal assisted Higgs inflation in light of BICEP2, arXiv:1405.1635 [INSPIRE].
  33. [33]
    C.D. Froggatt and H.B. Nielsen, Standard model criticality prediction: Top mass 173 ± 5 GeV and Higgs mass 135 ± 9 GeV, Phys. Lett. B 368 (1996) 96 [hep-ph/9511371] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, Gravitational corrections to standard model vacuum decay, Phys. Rev. D 77 (2008) 025034 [arXiv:0712.0242] [INSPIRE].ADSGoogle Scholar
  35. [35]
    A. Kobakhidze and A. Spencer-Smith, The Higgs vacuum is unstable, arXiv:1404.4709 [INSPIRE].
  36. [36]
    A. Spencer-Smith, Higgs vacuum stability in a mass-dependent renormalisation scheme, arXiv:1405.1975 [INSPIRE].
  37. [37]
    N. Haba and R. Takahashi, Higgs inflation with singlet scalar dark matter and right-handed neutrino in the light of BICEP2, Phys. Rev. D 89 (2014) 115009 [arXiv:1404.4737] [INSPIRE].ADSGoogle Scholar
  38. [38]
    I. Masina, The gravitational wave background and Higgs false vacuum inflation, Phys. Rev. D 89 (2014) 123505 [arXiv:1403.5244] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J.L. Cook, L.M. Krauss, A.J. Long and S. Sabharwal, Is Higgs inflation dead?, arXiv:1403.4971 [INSPIRE].
  40. [40]
    Y. Hamada, H. Kawai, K.-y. Oda and S.C. Park, Higgs inflation still alive, Phys. Rev. Lett. 112 (2014) 241301 [arXiv:1403.5043] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    K. Nakayama and F. Takahashi, Higgs chaotic inflation and the primordial B-mode polarization discovered by BICEP2, Phys. Lett. B 734 (2014) 96 [arXiv:1403.4132] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    M. Fairbairn, P. Grothaus and R. Hogan, The problem with false vacuum Higgs inflation, arXiv:1403.7483 [INSPIRE].
  43. [43]
    F. Bezrukov and M. Shaposhnikov, Higgs inflation at the critical point, arXiv:1403.6078 [INSPIRE].
  44. [44]
    K. Enqvist, T. Meriniemi and S. Nurmi, Higgs dynamics during inflation, arXiv:1404.3699 [INSPIRE].
  45. [45]
    A. Salvio and A. Strumia, Agravity, JHEP 06 (2014) 080 [arXiv:1403.4226] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    N. Kaloper and A. Lawrence, Natural chaotic inflation and UV sensitivity, arXiv:1404.2912 [INSPIRE].
  47. [47]
    D. Chialva and A. Mazumdar, Super-Planckian excursions of the inflaton and quantum corrections, arXiv:1405.0513 [INSPIRE].
  48. [48]
    A.D. Linde, Coleman-Weinberg theory and a new inflationary universe scenario, Phys. Lett. B 114 (1982) 431 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    J.R. Ellis, D.V. Nanopoulos, K.A. Olive and K. Tamvakis, Primordial supersymmetric inflation, Nucl. Phys. B 221 (1983) 524 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J.R. Ellis, D.V. Nanopoulos, K.A. Olive and K. Tamvakis, Fluctuations in a supersymmetric inflationary universe, Phys. Lett. B 120 (1983) 331 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  52. [52]
    R.F. Langbein, K. Langfeld, H. Reinhardt and L. von Smekal, Natural slow roll inflation, Mod. Phys. Lett. A 11 (1996) 631 [hep-ph/9310335] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P.F. Gonzalez-Diaz, Primordial Kaluza-Klein inflation, Phys. Lett. B 176 (1986) 29 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J. Yokoyama, Chaotic new inflation and primordial spectrum of adiabatic fluctuations, Phys. Rev. D 59 (1999) 107303 [INSPIRE].ADSGoogle Scholar
  55. [55]
    M.U. Rehman, Q. Shafi and J.R. Wickman, GUT inflation and proton decay after WMAP5, Phys. Rev. D 78 (2008) 123516 [arXiv:0810.3625] [INSPIRE].ADSGoogle Scholar
  56. [56]
    G. Barenboim, E.J. Chun and H.M. Lee, Coleman-Weinberg inflation in light of Planck, Phys. Lett. B 730 (2014) 81 [arXiv:1309.1695] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    N. Okada and Q. Shafi, Observable gravity waves from U(1)B−L Higgs and Coleman-Weinberg inflation, arXiv:1311.0921 [INSPIRE].
  58. [58]
    M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical naturalness and dynamical breaking of classical scale invariance, Mod. Phys. Lett. A 29 (2014) 1450077 [arXiv:1304.7006] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  60. [60]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  61. [61]
    R. Hempfling, The next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    R. Foot, A. Kobakhidze and R.R. Volkas, Electroweak Higgs as a pseudo-Goldstone boson of broken scale invariance, Phys. Lett. B 655 (2007) 156 [arXiv:0704.1165] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    R. Foot, A. Kobakhidze, K. McDonald and R. Volkas, Neutrino mass in radiatively-broken scale-invariant models, Phys. Rev. D 76 (2007) 075014 [arXiv:0706.1829] [INSPIRE].ADSGoogle Scholar
  64. [64]
    R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].ADSGoogle Scholar
  65. [65]
    W.-F. Chang, J.N. Ng and J.M.S. Wu, Shadow Higgs from a scale-invariant hidden U(1)(s) model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].ADSGoogle Scholar
  66. [66]
    M. Holthausen, M. Lindner and M.A. Schmidt, Radiative symmetry breaking of the minimal left-right symmetric model, Phys. Rev. D 82 (2010) 055002 [arXiv:0911.0710] [INSPIRE].ADSGoogle Scholar
  67. [67]
    S. Iso, N. Okada and Y. Orikasa, Classically conformal B L extended standard model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Iso, N. Okada and Y. Orikasa, The minimal B-L model naturally realized at TeV scale, Phys. Rev. D 80 (2009) 115007 [arXiv:0909.0128] [INSPIRE].ADSGoogle Scholar
  69. [69]
    R. Foot, A. Kobakhidze and R.R. Volkas, Stable mass hierarchies and dark matter from hidden sectors in the scale-invariant standard model, Phys. Rev. D 82 (2010) 035005 [arXiv:1006.0131] [INSPIRE].ADSGoogle Scholar
  70. [70]
    M. Holthausen, J. Kubo, K.S. Lim and M. Lindner, Electroweak and conformal symmetry breaking by a strongly coupled Hidden sector, JHEP 12 (2013) 076 [arXiv:1310.4423] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    T.G. Steele, Z.-W. Wang, D. Contreras and R.B. Mann, Viable dark matter via radiative symmetry breaking in a scalar singlet Higgs portal extension of the standard model, arXiv:1310.1960 [INSPIRE].
  72. [72]
    C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].ADSGoogle Scholar
  73. [73]
    R. Dermisek, T.H. Jung and H.D. Kim, Coleman-Weinberg Higgs, arXiv:1308.0891 [INSPIRE].
  74. [74]
    T. Hambye and A. Strumia, Dynamical generation of the weak and dark matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].ADSGoogle Scholar
  75. [75]
    S. Benic and B. Radovcic, Electroweak breaking and dark matter from the common scale, Phys. Lett. B 732 (2014) 91 [arXiv:1401.8183] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, Emergence of the electroweak scale through the Higgs portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    V.V. Khoze, Inflation and dark matter in the Higgs portal of classically scale invariant standard model, JHEP 11 (2013) 215 [arXiv:1308.6338] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    V.V. Khoze and G. Ro, Leptogenesis and neutrino oscillations in the classically conformal standard model with the Higgs portal, JHEP 10 (2013) 075 [arXiv:1307.3764] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    E.J. Chun, S. Jung and H.M. Lee, Radiative generation of the Higgs potential, Phys. Lett. B 725 (2013) 158 [arXiv:1304.5815] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    M. Hashimoto, S. Iso and Y. Orikasa, Radiative symmetry breaking at the Fermi scale and flat potential at the Planck scale, Phys. Rev. D 89 (2014) 016019 [arXiv:1310.4304] [INSPIRE].ADSGoogle Scholar
  81. [81]
    V.V. Khoze, C. McCabe and G. Ro, Higgs vacuum stability from the dark matter portal, arXiv:1403.4953 [INSPIRE].
  82. [82]
    J. Guo and Z. Kang, Higgs naturalness and dark matter stability by scale invariance, arXiv:1401.5609 [INSPIRE].
  83. [83]
    A. Farzinnia and J. Ren, Higgs partner searches and dark matter phenomenology in classically scale invariant Higgs sector, arXiv:1405.0498 [INSPIRE].
  84. [84]
    M. Hashimoto, S. Iso and Y. Orikasa, Radiative symmetry breaking from flat potential in various U(1) models, Phys. Rev. D 89 (2014) 056010 [arXiv:1401.5944] [INSPIRE].ADSGoogle Scholar
  85. [85]
    J. Kubo, K.S. Lim and M. Lindner, Electroweak symmetry breaking by QCD, arXiv:1403.4262 [INSPIRE].
  86. [86]
    J. Kubo, K.S. Lim and M. Lindner, Gamma-ray line from Nambu-Goldstone dark matter in a scale invariant extension of the standard model, arXiv:1405.1052 [INSPIRE].
  87. [87]
    D.S. Salopek, J.R. Bond and J.M. Bardeen, Designing density fluctuation spectra in inflation, Phys. Rev. D 40 (1989) 1753 [INSPIRE].ADSGoogle Scholar
  88. [88]
    R. Fakir and W.G. Unruh, Improvement on cosmological chaotic inflation through nonminimal coupling, Phys. Rev. D 41 (1990) 1783 [INSPIRE].ADSGoogle Scholar
  89. [89]
    D.I. Kaiser, Primordial spectral indices from generalized Einstein theories, Phys. Rev. D 52 (1995) 4295 [astro-ph/9408044] [INSPIRE].ADSGoogle Scholar
  90. [90]
    E. Komatsu and T. Futamase, Complete constraints on a nonminimally coupled chaotic inflationary scenario from the cosmic microwave background, Phys. Rev. D 59 (1999) 064029 [astro-ph/9901127] [INSPIRE].ADSGoogle Scholar
  91. [91]
    K. Nozari and S.D. Sadatian, Non-Minimal Inflation after WMAP3, Mod. Phys. Lett. A 23 (2008) 2933 [arXiv:0710.0058] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    K. Kannike, A. Racioppi and M. Raidal, nflation and dark matter in a classically scale-invariant model with non-minimal coupling to gravity, in preparation.Google Scholar
  93. [93]
    A.H. Guth, Eternal inflation and its implications, J. Phys. A 40 (2007) 6811 [hep-th/0702178] [INSPIRE].ADSMathSciNetGoogle Scholar
  94. [94]
    P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in the proceedings of the Workshop on unified theory and baryon number in the universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba, Japan (1979).Google Scholar
  96. [96]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  97. [97]
    S. Glashow, The future of elementary particle physics, NATO Adv. Study Inst.Ser. B Phys. 59 (1980) 687.Google Scholar
  98. [98]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  100. [100]
    J. Schechter and J.W.F. Valle, Neutrino decay and spontaneous violation of lepton number, Phys. Rev. D 25 (1982) 774 [INSPIRE].ADSGoogle Scholar
  101. [101]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    F. Lyonnet, I. Schienbein, F. Staub and A. Wingerter, PyR@TE: renormalization group equations for general gauge theories, Comput. Phys. Commun. 185 (2014) 1130 [arXiv:1309.7030] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    K. Enqvist, T. Meriniemi and S. Nurmi, Generation of the Higgs condensate and its decay after inflation, JCAP 10 (2013) 057 [arXiv:1306.4511] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    A. De Simone and A. Riotto, Cosmological perturbations from the standard model Higgs, JCAP 02 (2013) 014 [arXiv:1208.1344] [INSPIRE].CrossRefGoogle Scholar
  105. [105]
    D.H. Lyth, Generating the curvature perturbation at the end of inflation, JCAP 11 (2005) 006 [astro-ph/0510443] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    G. Dvali, A. Gruzinov and M. Zaldarriaga, A new mechanism for generating density perturbations from inflation, Phys. Rev. D 69 (2004) 023505 [astro-ph/0303591] [INSPIRE].ADSGoogle Scholar
  107. [107]
    L. Kofman, Probing string theory with modulated cosmological fluctuations, astro-ph/0303614 [INSPIRE].
  108. [108]
    O. Lebedev and A. Westphal, Metastable electroweak vacuum: implications for inflation, Phys. Lett. B 719 (2013) 415 [arXiv:1210.6987] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Kristjan Kannike
    • 1
  • Antonio Racioppi
    • 1
  • Martti Raidal
    • 2
  1. 1.National Institute of Chemical Physics and BiophysicsTallinnEstonia
  2. 2.Institute of PhysicsUniversity of TartuTartuEstonia

Personalised recommendations