Advertisement

Spontaneous breaking of scale invariance in a D = 3 U(N ) model with Chern-Simons gauge fields

  • William A. Bardeen
  • Moshe MosheEmail author
Open Access
Article

Abstract

We study spontaneous breaking of scale invariance in the large N limit of three dimensional U(N ) κ Chern-Simons theories coupled to a scalar field in the fundamental representation. When a λ6(ϕ · ϕ)3 self interaction term is added to the action we find a massive phase at a certain critical value for a combination of the λ6 and ’t Hooft’s λ = N/κ couplings. This model attracted recent attention since at finite κ it contains a singlet sector which is conjectured to be dual to Vasiliev’s higher spin gravity on AdS 4. Our paper concentrates on the massive phase of the 3d boundary theory. We discuss the advantage of introducing masses in the boundary theory through spontaneous breaking of scale invariance.

Keywords

AdS-CFT Correspondence 1/N Expansion Nonperturbative Effects Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N ) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    E.S. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M.A. Vasiliev, Higher spin gauge theories: star product and AdS space, in The many faces of the superworld, M.A. Shifman ed., World Scientific, Singapore (1999), pg. 533 [hep-th/9910096] [INSPIRE].Google Scholar
  7. [7]
    S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    S. Giombi and X. Yin, Higher spins in AdS and twistorial holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    S. Giombi and X. Yin, On higher spin gauge theory and the critical O(N ) model, Phys. Rev. D 85 (2012) 086005 [arXiv:1105.4011] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Giombi, S. Prakash and X. Yin, A note on CFT correlators in three dimensions, JHEP 07 (2013) 105 [arXiv:1104.4317] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4 /CFT 3 construction from collective fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R. de Mello Koch, A. Jevicki, K. Jin, J.P. Rodrigues and Q. Ye, S = 1 in O(N )/HS duality, Class. Quant. Grav. 30 (2013) 104005 [arXiv:1205.4117] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S. Giombi et al., Chern-Simons theory with vector fermion matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    O. Aharony, G. Gur-Ari and R. Yacoby, D = 3 bosonic vector models coupled to Chern-Simons gauge theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    S. Jain, S.P. Trivedi, S.R. Wadia and S. Yokoyama, Supersymmetric Chern-Simons theories with vector matter, JHEP 10 (2012) 194 [arXiv:1207.4750] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation functions of large-N Chern-Simons-matter theories and bosonization in three dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby, The thermal free energy in large-N Chern-Simons-matter theories, JHEP 03 (2013) 121 [arXiv:1211.4843] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ triality: from higher spin fields to strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    M. Moshe and J. Zinn-Justin, Quantum field theory in the large-N limit: a review, Phys. Rept. 385 (2003) 69 [hep-th/0306133] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    W.A. Bardeen, M. Moshe and M. Bander, Spontaneous breaking of scale invariance and the ultraviolet fixed point in O(N ) symmetric ϕ 6 in three-dimensions theory, Phys. Rev. Lett. 52 (1984) 1188 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D.J. Amit and E. Rabinovici, Breaking of scale invariance in ϕ 6 theory: tricriticality and critical end points, Nucl. Phys. B 257 (1985) 371 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    W.A. Bardeen, K. Higashijima and M. Moshe, Spontaneous breaking of scale invariance in a supersymmetric model, Nucl. Phys. B 250 (1985) 437 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Feinberg, M. Moshe, M. Smolkin and J. Zinn-Justin, Spontaneous breaking of scale invariance and supersymmetric models at finite temperature, Int. J. Mod. Phys. A 20 (2005) 4475 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.FermilabBataviaU.S.A.
  2. 2.Department of Physics, Technion — Israel Institute of TechnologyHaifaIsrael

Personalised recommendations