• Alberto SalvioEmail author
  • Alessandro Strumia
Open Access


We explore the possibility that the fundamental theory of nature does not contain any scale. This implies a renormalizable quantum gravity theory where the graviton kinetic term has 4 derivatives, and can be reinterpreted as gravity minus an anti-graviton. We compute the super-Planckian RGE of adimensional gravity coupled to a generic matter sector. The Planck scale and a flat space can arise dynamically at quantum level provided that a quartic scalar coupling and its β function vanish at the Planck scale. This is how the Higgs boson behaves for M h ≈ 125 GeV and M t ≈ 171 GeV. Within agravity, inflation is a generic phenomenon: the slow-roll parameters are given by the β-functions of the theory, and are small if couplings are perturbative. The predictions n s ≈ 0.967 and r ≈ 0.13 arise if the inflaton is identified with the Higgs of gravity. Furthermore, quadratically divergent corrections to the Higgs mass vanish: a small weak scale is natural and can be generated by agravity quantum corrections.


Cosmology of Theories beyond the SM Renormalization Group Models of Quantum Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K.G. Wilson, The Renormalization Group and Strong Interactions, Phys. Rev. D 3 (1971) 1818 [INSPIRE].ADSGoogle Scholar
  2. [2]
    K.G. Wilson, The Origins of lattice gauge theory, Nucl. Phys. Proc. Suppl. 140 (2005) 3 [hep-lat/0412043] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L. Giusti, A. Romanino and A. Strumia, Natural ranges of supersymmetric signals, Nucl. Phys. B 550 (1999) 3 [hep-ph/9811386] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R. Barbieri and A. Strumia, TheLEP paradox’, hep-ph/0007265 [INSPIRE].
  5. [5]
    A. Strumia, The Fine-tuning price of the early LHC, JHEP 04 (2011) 073 [arXiv:1101.2195] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Arvanitaki, M. Baryakhtar, X. Huang, K. van Tilburg and G. Villadoro, The Last Vestiges of Naturalness, JHEP 03 (2014) 022 [arXiv:1309.3568] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Fakir and W.G. Unruh, Improvement on cosmological chaotic inflation through nonminimal coupling, Phys. Rev. D 41 (1990) 1783 [INSPIRE].ADSGoogle Scholar
  9. [9]
    D.I. Kaiser, Primordial spectral indices from generalized Einstein theories, Phys. Rev. D 52 (1995) 4295 [astro-ph/9408044] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Tsujikawa and B. Gumjudpai, Density perturbations in generalized Einstein scenarios and constraints on nonminimal couplings from the Cosmic Microwave Background, Phys. Rev. D 69 (2004) 123523 [astro-ph/0402185] [INSPIRE].ADSGoogle Scholar
  11. [11]
    F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations, JHEP 01 (2011) 016 [arXiv:1008.5157] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C.P. Burgess, H.M. Lee and M. Trott, Power-counting and the Validity of the Classical Approximation During Inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J.L.F. Barbon and J.R. Espinosa, On the Naturalness of Higgs Inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Linde, Inflationary Cosmology after Planck 2013, arXiv:1402.0526 [INSPIRE].
  16. [16]
    C.P. Burgess, S.P. Patil and M. Trott, On the Predictiveness of Single-Field Inflationary Models, arXiv:1402.1476 [INSPIRE].
  17. [17]
    G.F. Giudice and H.M. Lee, Starobinsky-like inflation from induced gravity, arXiv:1402.2129 [INSPIRE].
  18. [18]
    T. Prokopec and J. Weenink, Naturalness in Higgs inflation in a frame independent formalism, arXiv:1403.3219 [INSPIRE].
  19. [19]
    J. Joergensen, F. Sannino and O. Svendsen, BICEP2 hints towards Quantum Corrections for Non-Minimally Coupled Inflationary Theories, arXiv:1403.3289 [INSPIRE].
  20. [20]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [INSPIRE].
  21. [21]
    F. Englert, C. Truffin and R. Gastmans, Conformal Invariance in Quantum Gravity, Nucl. Phys. B 117 (1976) 407 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Wetterich, Cosmology and the Fate of Dilatation Symmetry,” Nucl. Phys. B 302 (1988) 668 [INSPIRE]ADSCrossRefGoogle Scholar
  23. [23]
    W. Bardeen, On Naturalness in the Standard Model, FERMILAB-CONF-95-391-T
  24. [24]
    C.T. Hill, Conjecture on the physical implications of the scale anomaly, hep-th/0510177 [INSPIRE].
  25. [25]
    R. Hempfling, The Next-to-minimal Coleman-Weinberg model, Phys. Lett. B 379 (1996) 153 [hep-ph/9604278] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    K.A. Meissner and H. Nicolai, Conformal Symmetry and the Standard Model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    J.P. Fatelo, J.M. Gerard, T. Hambye and J. Weyers, Symmetry breaking induced by top loops, Phys. Rev. Lett. 74 (1995) 492 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Hambye, Symmetry breaking induced by top quark loops from a model without scalar mass, Phys. Lett. B 371 (1996) 87 [hep-ph/9510266] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    W.-F. Chang, J.N. Ng and J.M.S. Wu, Shadow Higgs from a scale-invariant hidden U(1)(s) model, Phys. Rev. D 75 (2007) 115016 [hep-ph/0701254] [INSPIRE].ADSGoogle Scholar
  30. [30]
    R. Foot, A. Kobakhidze and R.R. Volkas, Electroweak Higgs as a pseudo-Goldstone boson of broken scale invariance, Phys. Lett. B 655 (2007) 156 [arXiv:0704.1165] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Foot, A. Kobakhidze, K. McDonald and R. Volkas, Neutrino mass in radiatively-broken scale-invariant models, Phys. Rev. D 76 (2007) 075014 [arXiv:0706.1829] [INSPIRE].ADSGoogle Scholar
  32. [32]
    R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A Solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].ADSGoogle Scholar
  33. [33]
    S. Iso, N. Okada and Y. Orikasa, The minimal B-L model naturally realized at TeV scale, Phys. Rev. D 80 (2009) 115007 [arXiv:0909.0128] [INSPIRE].ADSGoogle Scholar
  34. [34]
    T. Hur and P. Ko, Scale invariant extension of the standard model with strongly interacting hidden sector, Phys. Rev. Lett. 106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    L. Alexander-Nunneley and A. Pilaftsis, The Minimal Scale Invariant Extension of the Standard Model, JHEP 09 (2010) 021 [arXiv:1006.5916] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Iso and Y. Orikasa, TeV Scale B-L model with a flat Higgs potential at the Planck scale - in view of the hierarchy problem -, PTEP 2013 (2013) 023B08 [arXiv:1210.2848] [INSPIRE].
  37. [37]
    C. Englert, J. Jaeckel, V.V. Khoze and M. Spannowsky, Emergence of the Electroweak Scale through the Higgs Portal, JHEP 04 (2013) 060 [arXiv:1301.4224] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E.J. Chun, S. Jung and H.M. Lee, Radiative generation of the Higgs potential, Phys. Lett. B 725 (2013) 158 [arXiv:1304.5815] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical Naturalness and Dynamical Breaking of Classical Scale Invariance, Mod. Phys. Lett. A 29 (2014) 1450077 [arXiv:1304.7006] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    T. Henz, J.M. Pawlowski, A. Rodigast and C. Wetterich, Dilaton Quantum Gravity, Phys. Lett. B 727 (2013) 298 [arXiv:1304.7743] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].ADSGoogle Scholar
  42. [42]
    C.D. Carone and R. Ramos, Classical scale-invariance, the electroweak scale and vector dark matter, Phys. Rev. D 88 (2013) 055020 [arXiv:1307.8428] [INSPIRE].ADSGoogle Scholar
  43. [43]
    V.V. Khoze, Inflation and Dark Matter in the Higgs Portal of Classically Scale Invariant Standard Model, JHEP 11 (2013) 215 [arXiv:1308.6338] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    I. Quiros, Scale invariance and broken electroweak symmetry may coexist together, arXiv:1312.1018 [INSPIRE].
  45. [45]
    I. Quiros, Scale invariant theory of gravity and the standard model of particles, arXiv:1401.2643 [INSPIRE].
  46. [46]
    C.T. Hill, Is the Higgs Boson Associated with Coleman-Weinberg Dynamical Symmetry Breaking?, Phys. Rev. D 89 (2014) 073003 [arXiv:1401.4185] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].ADSGoogle Scholar
  48. [48]
    K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar
  49. [49]
    G. Magnano, M. Ferraris and M. Francaviglia, Nonlinear gravitational Lagrangians, Gen. Rel. Grav. 19 (1987) 465.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  50. [50]
    G. Magnano, M. Ferraris and M. Francaviglia, Legendre transformation and dynamical structure of higher derivative gravity, Class. Quant. Grav. 7 (1990) 557 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  51. [51]
    A. Jakubiec and J. Kijowski, On Theories of Gravitation With Nonlinear Lagrangians, Phys. Rev. D 37 (1988) 1406 [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    J.C. Alonso, J.F. Barbero G., J. Julve and A. Tiemblo, Particle contents of higher derivative gravity, Class. Quant. Grav. 11 (1994) 865 [INSPIRE].
  53. [53]
    A. Hindawi, B.A. Ovrut and D. Waldram, Consistent spin two coupling and quadratic gravitation, Phys. Rev. D 53 (1996) 5583 [hep-th/9509142] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    M. Ostrogradski, Memoires sur les equations differentielles relatives au probleme des isoperimetres, Mem. Ac. St. Petersbourg VI (1850) 385.Google Scholar
  55. [55]
    A.V. Smilga, Ghost-free higher-derivative theory, Phys. Lett. B 632 (2006) 433 [hep-th/0503213] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    A. Mostafazadeh, A Hamiltonian Formulation of the Pais-Uhlenbeck Oscillator that Yields a Stable and Unitary Quantum System, Phys. Lett. A 375 (2010) 93 [arXiv:1008.4678] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  57. [57]
    M. Pavsic, Stable Self-Interacting Pais-Uhlenbeck Oscillator, Mod. Phys. Lett. A 28 (2013) 1350165 [arXiv:1302.5257] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Pais and G.E. Uhlenbeck, On Field theories with nonlocalized action, Phys. Rev. 79 (1950) 145 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  59. [59]
    T.D. Lee and G.C. Wick, Negative Metric and the Unitarity of the S Matrix, Nucl. Phys. B 9 (1969) 209 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  60. [60]
    T.D. Lee and G.C. Wick, Unitarity in the N θθ Sector of Soluble Model With Indefinite Metric, Nucl. Phys. B 10 (1969) 1 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  61. [61]
    T.D. Lee and G.C. Wick, Finite Theory of Quantum Electrodynamics, Phys. Rev. D 2 (1970) 1033 [INSPIRE].ADSMathSciNetGoogle Scholar
  62. [62]
    N. Nakanishi, Lorentz noninvariance of the complex-ghost relativistic field theory, Phys. Rev. D 3 (1971) 811 [INSPIRE].ADSGoogle Scholar
  63. [63]
    T.D. Lee and G.C. Wick, Questions of Lorentz Invariance in Field Theories With Indefinite Metric, Phys. Rev. D 3 (1971) 1046 [INSPIRE].ADSGoogle Scholar
  64. [64]
    S.W. Hawking and T. Hertog, Living with ghosts, Phys. Rev. D 65 (2002) 103515 [hep-th/0107088] [INSPIRE].ADSMathSciNetGoogle Scholar
  65. [65]
    C.M. Bender and P.D. Mannheim, No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model, Phys. Rev. Lett. 100 (2008) 110402 [arXiv:0706.0207] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    R.E. Cutkosky, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, A non-analytic S matrix, Nucl. Phys. B 12 (1969) 281 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    N. Nakanishi, Remarks on the complex-ghost relativistic field theory, Phys. Rev. D 3 (1971) 3235 [INSPIRE].ADSGoogle Scholar
  68. [68]
    D.G. Boulware, G.T. Horowitz and A. Strominger, Zero Energy Theorem for Scale Invariant Gravity, Phys. Rev. Lett. 50 (1983) 1726 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  69. [69]
    E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  70. [70]
    R.P. Woodard, Avoiding dark energy with 1/r modifications of gravity, Lect. Notes Phys. 720 (2007) 403 [astro-ph/0601672] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A.V. Smilga, Comments on the dynamics of the Pais-Uhlenbeck oscillator, SIGMA 5 (2009) 017 [arXiv:0808.0139] [INSPIRE].MathSciNetGoogle Scholar
  72. [72]
    J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE].
  73. [73]
    G. ’t Hooft, A class of elementary particle models without any adjustable real parameters, Found. Phys. 41 (2011) 1829 [arXiv:1104.4543] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  74. [74]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 3. Scalar Quartic Couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  79. [79]
    R.P. Woodard, The Vierbein Is Irrelevant in Perturbation Theory, Phys. Lett. B 148 (1984) 440 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  80. [80]
    R. Contino, L. Pilo, R. Rattazzi and A. Strumia, Graviton loops and brane observables, JHEP 06 (2001) 005 [hep-ph/0103104] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  81. [81]
    G. Narain and R. Anishetty, Running Couplings in Quantum Theory of Gravity Coupled with Gauge Fields, JHEP 10 (2013) 203 [arXiv:1309.0473] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  82. [82]
    M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    E. Elizalde, S.D. Odintsov and A. Romeo, Renormalization group properties of higher derivative quantum gravity with matter in (4-epsilon)-dimensions, Nucl. Phys. B 462 (1996) 315 [hep-th/9502131] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  84. [84]
    I.L. Buchbinder, D.D. Odintsov and I.L. Shapiro, Effective Action in Quantum Gravity, IOP (1992).Google Scholar
  85. [85]
    E.V. Gorbar and I.L. Shapiro, Renormalization group and decoupling in curved space. 2. The Standard model and beyond, JHEP 06 (2003) 004 [hep-ph/0303124] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  86. [86]
    Y. Yoon and Y. Yoon, Asymptotic conformal invariance of SU(2) and standard models in curved space-time, Int. J. Mod. Phys. A 12 (1997) 2903 [hep-th/9612001] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    I.G. Avramidi, Covariant methods for the calculation of the effective action in quantum field theory and investigation of higher derivative quantum gravity, hep-th/9510140 [INSPIRE].
  88. [88]
    E.S. Fradkin and A.A. Tseytlin, Renormalizable asymptotically free quantum theory of gravity, Nucl. Phys. B 201 (1982) 469 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  89. [89]
    G ‘t Hooft and M. Veltman, One loop divergencies in the theory of gravitation, Annal. IHP A 20 (1974) 69.MathSciNetGoogle Scholar
  90. [90]
    S. Deser and P. van Nieuwenhuizen, One Loop Divergences of Quantized Einstein-Maxwell Fields, Phys. Rev. D 10 (1974) 401.ADSGoogle Scholar
  91. [91]
    S. Deser and P. van Nieuwenhuizen, Nonrenormalizability of the Quantized Dirac-Einstein System, Phys. Rev. D 10 (1974) 411.ADSGoogle Scholar
  92. [92]
    A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation, Sov. Phys. Dokl. 12 (1968) 1040 [INSPIRE].ADSGoogle Scholar
  93. [93]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  94. [94]
    D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    M. Sher, The Renormalization Group and Inflationary Potentials, Phys. Lett. B 135 (1984) 52 [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    A. Arvanitaki and S. Dimopoulos, private communication.Google Scholar
  97. [97]
    M.M. Anber, J.F. Donoghue and M. El-Houssieny, Running couplings and operator mixing in the gravitational corrections to coupling constants, Phys. Rev. D 83 (2011) 124003 [arXiv:1011.3229] [INSPIRE].ADSGoogle Scholar
  98. [98]
    L. Randall, Composite axion models and Planck scale physics, Phys. Lett. B 284 (1992) 77 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Departamento de Física TeóricaUniversidad Autónoma de Madrid and Instituto de Física Teórica IFT-UAM/CSICMadridSpain
  2. 2.Dipartimento di Fisica dell’Università di Pisa and INFNPisaItaly
  3. 3.National Institute of Chemical Physics and BiophysicsTallinnEstonia

Personalised recommendations