Heterotic model building: 16 special manifolds

  • Yang-Hui He
  • Seung-Joo Lee
  • Andre Lukas
  • Chuang Sun
Open Access


We study heterotic model building on 16 specific Calabi-Yau manifolds constructed as hypersurfaces in toric four-folds. These 16 manifolds are the only ones among the more than half a billion manifolds in the Kreuzer-Skarke list with a non-trivial first fundamental group. We classify the line bundle models on these manifolds, both for SU(5) and SO(10) GUTs, which lead to consistent supersymmetric string vacua and have three chiral families. A total of about 29000 models is found, most of them corresponding to SO(10) GUTs. These models constitute a starting point for detailed heterotic model building on Calabi-Yau manifolds in the Kreuzer-Skarke list. The data for these models can be downloaded here.


Superstrings and Heterotic Strings Differential and Algebraic Geometry GUT 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    L.B. Anderson, Y.-H. He and A. Lukas, Heterotic Compactification, An Algorithmic Approach, JHEP 07 (2007) 049 [hep-th/0702210] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    L.B. Anderson, A. Constantin, J. Gray, A. Lukas and E. Palti, A Comprehensive Scan for Heterotic SU(5) GUT models, JHEP 01 (2014) 047 [arXiv:1307.4787] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    Y.-H. He, P. Candelas, A. Hanany, A. Lukas and B. Ovrut, Computational Algebraic Geometry in String and Gauge Theory, Adv. High En. Phys. (2012) 431898.Google Scholar
  4. [4]
    R. Blumenhagen and T. Rahn, Landscape Study of Target Space Duality of (0,2) Heterotic String Models, JHEP 09 (2011) 098 [arXiv:1106.4998] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    R. Blumenhagen, B. Jurke, T. Rahn and H. Roschy, Cohomology of Line Bundles: Applications, J. Math. Phys. 53 (2012) 012302 [arXiv:1010.3717] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    X. Gao and P. Shukla, On Classifying the Divisor Involutions in Calabi-Yau Threefolds, JHEP 11 (2013) 170 [arXiv:1307.1139] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, Higgs doublets, split multiplets and heterotic SU(3)(C) × SU(2)(L) × U (1)(Y ) spectra, Phys. Lett. B 618 (2005) 259 [hep-th/0409291] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The Exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring Positive Monad Bundles And A New Heterotic Standard Model, JHEP 02 (2010) 054 [arXiv:0911.1569] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    P. Candelas, A.M. Dale, C.A. Lutken and R. Schimmrigk, Complete Intersection Calabi-Yau Manifolds, Nucl. Phys. B 298 (1998) 493.ADSMathSciNetGoogle Scholar
  12. [12]
    R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory, Commun. Math. Phys. 187 (1997) 679 [hep-th/9701162] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209 [hep-th/0002240] [INSPIRE].MathSciNetGoogle Scholar
  14. [14]
    Y.-H. He, Calabi-Yau Geometries: Algorithms, Databases and Physics, Int. J. Mod. Phys. A 28 (2013) 1330032 [arXiv:1308.0186] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    L.B. Anderson, Y.-H. He and A. Lukas, Monad Bundles in Heterotic String Compactifications, JHEP 07 (2008) 104 [arXiv:0805.2875] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    L.B. Anderson, J. Gray, D. Grayson, Y.-H. He and A. Lukas, Yukawa Couplings in Heterotic Compactification, Commun. Math. Phys. 297 (2010) 95 [arXiv:0904.2186] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  17. [17]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two Hundred Heterotic Standard Models on Smooth Calabi-Yau Threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].ADSGoogle Scholar
  18. [18]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic Line Bundle Standard Models, JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic standard models from smooth Calabi-Yau three-folds, PoS(CORFU2011)096.
  20. [20]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Vacuum Varieties, Holomorphic Bundles and Complex Structure Stabilization in Heterotic Theories, JHEP 07 (2013) 017 [arXiv:1304.2704] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    M. Gabella, Y.-H. He and A. Lukas, An Abundance of Heterotic Vacua, JHEP 12 (2008) 027 [arXiv:0808.2142] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The Particle spectrum of heterotic compactifications, JHEP 12 (2004) 054 [hep-th/0405014] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    Y.-H. He, S.-J. Lee and A. Lukas, Heterotic Models from Vector Bundles on Toric Calabi-Yau Manifolds, JHEP 05 (2010) 071 [arXiv:0911.0865] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    Y.-H. He, M. Kreuzer, S.-J. Lee and A. Lukas, Heterotic Bundles on Calabi-Yau Manifolds with Small Picard Number, JHEP 12 (2011) 039 [arXiv:1108.1031] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    V. Braun, On Free Quotients of Complete Intersection Calabi-Yau Manifolds, JHEP 04 (2011) 005 [arXiv:1003.3235] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    V. Batyrev and M. Kreuzer, Integral cohomology and mirror symmetry for Calabi-Yau 3-folds, math/0505432 [INSPIRE].
  27. [27]
    V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, alg-geom/9310003.
  28. [28]
    M. Kreuzer, Toric geometry and Calabi-Yau compactifications, Ukr. J. Phys. 55 (2010) 613 [hep-th/0612307] [INSPIRE].Google Scholar
  29. [29]
    D.A. Cox, J.B. Little and H.K. Schenck, Toric varieties, American Mathematical Soc. vol. 124 (2011).Google Scholar
  30. [30]
  31. [31]
    P. Candelas, A. Constantin and H. Skarke, An Abundance of K3 Fibrations from Polyhedra with Interchangeable Parts, Commun. Math. Phys. 324 (2013) 937 [arXiv:1207.4792] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  32. [32]
    The database of Heterotic Models on Toric Calabi-Yau, http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/toricdata/index.html.

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Yang-Hui He
    • 1
    • 2
    • 3
  • Seung-Joo Lee
    • 4
  • Andre Lukas
    • 5
  • Chuang Sun
    • 5
  1. 1.Department of MathematicsCity UniversityLondonU.K.
  2. 2.School of PhysicsNanKai UniversityTianjinP.R. China
  3. 3.Merton CollegeUniversity of OxfordOxfordU.K.
  4. 4.School of PhysicsKorea Institute for Advanced StudySeoulKorea
  5. 5.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.

Personalised recommendations