Advertisement

Probing Lorentz and CPT violation in a magnetized iron detector using atmospheric neutrinos

  • Animesh ChatterjeeEmail author
  • Raj Gandhi
  • Jyotsna Singh
Open Access
Article

Abstract

We study the sensitivity of the Iron Calorimeter (ICAL) at the India-Based Neutrino Observatory (INO) to Lorentz and CPT violation in the neutrino sector. Its ability to identify the charge of muons in addition to their direction and energy makes ICAL a useful tool in putting constraints on these fundamental symmetries. Using resolution, efficiencies, errors and uncertainties obtained from ICAL detector simulations, we determine sensitivities to δb 31, which parametizes the violations in the muon neutrino sector. We carry out calculations for three generic cases representing mixing in the CPT violating part of the hamiltonian, specifically , when the mixing is 1) small, 2) large, 3) the same as that in the PMNS matrix. We find that for both types of hierarchy, ICAL at INO should be sensitive to δb 31 ≳ 4 × 10−23 GeV at 99% C.L. for 500 kt-yr exposure, unless the mixing in the CPT violation sector is small.

Keywords

Neutrino Physics Solar and Atmospheric Neutrinos 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    W. Pauli, Exclusion principle, Lorentz group and reflection of space-time and charge, Pergamon Press, London U.K. (1955).Google Scholar
  2. [2]
    G. Grawert et al., The TCP Theorem and its Applications, Fortschr. Phys. 7 (1959) 291.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    I.S. Tsukerman, CPT invariance and neutrino physics, arXiv:1006.4989 [INSPIRE].
  4. [4]
    V.A. Kostelecky and S. Samuel, Spontaneous Breaking of Lorentz Symmetry in String Theory, Phys. Rev. D 39 (1989) 683 [INSPIRE].ADSGoogle Scholar
  5. [5]
    G. Amelino-Camelia, J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos and S. Sarkar, Tests of quantum gravity from observations of gamma-ray bursts, Nature 393 (1998) 763 [astro-ph/9712103] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D. Sudarsky, L. Urrutia and H. Vucetich, Bounds on stringy quantum gravity from low-energy existing data, Phys. Rev. D 68 (2003) 024010 [gr-qc/0211101] [INSPIRE].ADSGoogle Scholar
  7. [7]
    J. Alfaro, H.A. Morales-Tecotl and L.F. Urrutia, Quantum gravity corrections to neutrino propagation, Phys. Rev. Lett. 84 (2000) 2318 [gr-qc/9909079] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    O.W. Greenberg, CPT violation implies violation of Lorentz invariance, Phys. Rev. Lett. 89 (2002) 231602 [hep-ph/0201258] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D. Colladay and V.A. Kostelecky, Lorentz violating extension of the standard model, Phys. Rev. D 58 (1998) 116002 [hep-ph/9809521] [INSPIRE].ADSGoogle Scholar
  11. [11]
    V.A. Kostelecky, Gravity, Lorentz violation and the standard model, Phys. Rev. D 69 (2004) 105009 [hep-th/0312310] [INSPIRE].ADSGoogle Scholar
  12. [12]
    V.A. Kostelecky and M. Mewes, Lorentz and CPT violation in the neutrino sector, Phys. Rev. D 70 (2004) 031902 [hep-ph/0308300] [INSPIRE].ADSGoogle Scholar
  13. [13]
    V.A. Kostelecky and M. Mewes, Lorentz and CPT violation in neutrinos, Phys. Rev. D 69 (2004) 016005 [hep-ph/0309025] [INSPIRE].ADSGoogle Scholar
  14. [14]
    IceCube collaboration, R. Abbasi et al., Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube, Phys. Rev. D 82 (2010) 112003 [arXiv:1010.4096] [INSPIRE].ADSGoogle Scholar
  15. [15]
    Double CHOOZ collaboration, Y. Abe et al., First Test of Lorentz Violation with a Reactor-based Antineutrino Experiment, Phys. Rev. D 86 (2012) 112009 [arXiv:1209.5810] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.S. Díaz, T. Katori, J. Spitz and J.M. Conrad, Search for neutrino-antineutrino oscillations with a reactor experiment, Phys. Lett. B 727 (2013) 412 [arXiv:1307.5789] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    LSND collaboration, L.B. Auerbach et al., Tests of Lorentz violation in \( \overline{nu} \) μν e oscillations, Phys. Rev. D 72 (2005) 076004 [hep-ex/0506067] [INSPIRE].ADSGoogle Scholar
  18. [18]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses, Phys. Lett. B 718 (2013) 1303 [arXiv:1109.3480] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    MINOS collaboration, P. Adamson et al., Search for Lorentz invariance and CPT violation with muon antineutrinos in the MINOS Near Detector, Phys. Rev. D 85 (2012) 031101 [arXiv:1201.2631] [INSPIRE].ADSGoogle Scholar
  20. [20]
    B. Rebel and S. Mufson, The Search for Neutrino-Antineutrino Mixing Resulting from Lorentz Invariance Violation using neutrino interactions in MINOS, Astropart. Phys. 48 (2013) 78 [arXiv:1301.4684] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T. Akiri, Sensitivity of Atmospheric Neutrinos in Super-Kamiokande to Lorentz Violation, arXiv:1308.2210 [INSPIRE].
  22. [22]
    S.R. Coleman and S.L. Glashow, High-energy tests of Lorentz invariance, Phys. Rev. D 59 (1999) 116008 [hep-ph/9812418] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J.N. Bahcall, V. Barger and D. Marfatia, How accurately can one test CPT conservation with reactor and solar neutrino experiments?, Phys. Lett. B 534 (2002) 120 [hep-ph/0201211] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Datta, R. Gandhi, P. Mehta and S.U. Sankar, Atmospheric neutrinos as a probe of CPT and Lorentz violation, Phys. Lett. B 597 (2004) 356 [hep-ph/0312027] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    V.D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, CPT odd resonances in neutrino oscillations, Phys. Rev. Lett. 85 (2000) 5055 [hep-ph/0005197] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Dighe and S. Ray, CPT violation in long baseline neutrino experiments: A three flavor analysis, Phys. Rev. D 78 (2008) 036002 [arXiv:0802.0121] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J.S. Diaz, V.A. Kostelecky and M. Mewes, Perturbative Lorentz and CPT violation for neutrino and antineutrino oscillations, Phys. Rev. D 80 (2009) 076007 [arXiv:0908.1401] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J.S. Diaz, Long-baseline neutrino experiments as tests for Lorentz violation, arXiv:0909.5360 [INSPIRE].
  29. [29]
    A. Samanta, Probing CPT violation in neutrinos oscillation: A three flavor analysis, Phys. Lett. B 693 (2010) 296 [arXiv:1005.4851] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    N. Engelhardt, A.E. Nelson and J.R. Walsh, Apparent CPT Violation in Neutrino Oscillation Experiments, Phys. Rev. D 81 (2010) 113001 [arXiv:1002.4452] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S.T. Scully and F.W. Stecker, Testing Lorentz Invariance with Neutrinos from Ultrahigh Energy Cosmic Ray Interactions, Astropart. Phys. 34 (2011) 575 [arXiv:1008.4034] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Ellis, H.-T. Janka, N.E. Mavromatos, A.S. Sakharov and E.K.G. Sarkisyan, Probing Lorentz Violation in Neutrino Propagation from a Core-Collapse Supernova, Phys. Rev. D 85 (2012) 045032 [arXiv:1110.4848] [INSPIRE].ADSGoogle Scholar
  33. [33]
    B.S. Koranga, V. Kumar and A. Jha, CPT violating neutrino oscillation under planck scale effects, Int. J. Theor. Phys. 50 (2011) 2609 [INSPIRE].CrossRefzbMATHGoogle Scholar
  34. [34]
    V.A. Mitsou, Dark matter searches at LHC, J. Phys. Conf. Ser. 335 (2011) 012003 [arXiv:1104.1149] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    I. Motie and S.-S. Xue, High energy neutrino oscillation at the presence of the Lorentz Invariance Violation, Int. J. Mod. Phys. A 27 (2012) 1250104 [arXiv:1206.0709] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    P.W. Gorham et al., Implications of ultra-high energy neutrino flux constraints for Lorentz-invariance violating cosmogenic neutrinos, Phys. Rev. D 86 (2012) 103006 [arXiv:1207.6425] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Chakraborty, A. Mirizzi and G. Sigl, Testing Lorentz Invariance with neutrino burst from supernova neutronization, Phys. Rev. D 87 (2013) 017302 [arXiv:1211.7069] [INSPIRE].ADSGoogle Scholar
  38. [38]
    LSND, MiniBooNE, and Double CHOOZ collaborations, T. Katori, Tests of Lorentz and CPT violation with neutrinos, PoS(ICHEP2012)008 [arXiv:1211.7129] [INSPIRE].
  39. [39]
    B. Altschul, Neutrino Beam Constraints on Flavor-Diagonal Lorentz Violation, Phys. Rev. D 87 (2013) 096004 [arXiv:1302.2598] [INSPIRE].ADSGoogle Scholar
  40. [40]
    Z.-K. Guo and J.-W. Hu, Nucleosynthesis constraint on Lorentz invariance violation in the neutrino sector, Phys. Rev. D 87 (2013) 123519 [arXiv:1303.2813] [INSPIRE].ADSGoogle Scholar
  41. [41]
    E. Borriello, S. Chakraborty, A. Mirizzi and P.D. Serpico, Stringent constraint on neutrino Lorentz-invariance violation from the two IceCube PeV neutrinos, Phys. Rev. D 87 (2013) 116009 [arXiv:1303.5843] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J.S. Diaz, A. Kostelecky and R. Lehnert, Relativity violations and beta decay, Phys. Rev. D 88 (2013) 071902 [arXiv:1305.4636] [INSPIRE].ADSGoogle Scholar
  43. [43]
    F.W. Stecker, Limiting superluminal electron and neutrino velocities using the 2010 Crab Nebula flare and the IceCube PeV neutrino events, Astropart. Phys. 56 (2014) 16 [arXiv:1306.6095] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J.S. Diaz, Lorentz and CPT violation in the Neutrino Sector, arXiv:1307.6845 [INSPIRE].
  45. [45]
    F. Rossi-Torres, Probing Lorentz Invariance Violation with Neutrino Factories, arXiv:1307.0884 [INSPIRE].
  46. [46]
    J.S. Diaz, A. Kostelecky and M. Mewes, Testing Relativity with High-Energy Astrophysical Neutrinos, Phys. Rev. D 89 (2014) 043005 [arXiv:1308.6344] [INSPIRE].ADSGoogle Scholar
  47. [47]
    J.S. Diaz, Limits on Lorentz and CPT violation from double beta decay, Phys. Rev. D 89 (2014) 036002 [arXiv:1311.0930] [INSPIRE].ADSGoogle Scholar
  48. [48]
    INO collaboration, M.S. Athar et al., A Report of the INO Feasibility Study, INO-2006-01.Google Scholar
  49. [49]
    D. Indumathi and M.V.N. Murthy, A question of hierarchy: Matter effects with atmospheric neutrinos and anti-neutrinos, Phys. Rev. D 71 (2005) 013001 [hep-ph/0407336] [INSPIRE].ADSGoogle Scholar
  50. [50]
    R. Gandhi, P. Ghoshal, S. Goswami, P. Mehta, S.U. Sankar and S. Shalgar, Mass Hierarchy Determination via future Atmospheric Neutrino Detectors, Phys. Rev. D 76 (2007) 073012 [arXiv:0707.1723] [INSPIRE].ADSGoogle Scholar
  51. [51]
    A. Samanta, Discrimination of mass hierarchy with atmospheric neutrinos at a magnetized muon detector, Phys. Rev. D 81 (2010) 037302 [arXiv:0907.3540] [INSPIRE].ADSGoogle Scholar
  52. [52]
    M. Blennow and T. Schwetz, Identifying the Neutrino mass Ordering with INO and NOvA, JHEP 08 (2012) 058 [Erratum ibid. 1211 (2012) 098] [arXiv:1203.3388] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Ghosh, T. Thakore and S. Choubey, Determining the Neutrino Mass Hierarchy with INO, T2K, NOvA and Reactor Experiments, JHEP 04 (2013) 009 [arXiv:1212.1305] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    D. Colladay and V.A. Kostelecky, CPT violation and the standard model, Phys. Rev. D 55 (1997) 6760 [hep-ph/9703464] [INSPIRE].ADSGoogle Scholar
  55. [55]
    D. Mattingly, Modern tests of Lorentz invariance, Living Rev. Rel. 8 (2005) 5 [gr-qc/0502097] [INSPIRE].Google Scholar
  56. [56]
    M.C. Gonzalez-Garcia and M. Maltoni, Atmospheric neutrino oscillations and new physics, Phys. Rev. D 70 (2004) 033010 [hep-ph/0404085] [INSPIRE].ADSGoogle Scholar
  57. [57]
    D. Casper, The nuance neutrino physics simulation and the future, Nucl. Phys. Proc. Suppl. 112 (2002) 161 [hep-ph/0208030] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model, Phys. Rev. D 83 (2011) 123001 [arXiv:1102.2688] [INSPIRE].ADSGoogle Scholar
  59. [59]
    INO collaboration, A. Chatterjee et al., A Simulations Study of the Muon Response of the Iron Calorimeter Detector at the India-based Neutrino Observatory, arXiv:1405.7243 [INSPIRE].
  60. [60]
    V.A. Kostelecky and N. Russell, Data tables for Lorentz and CPT Violation, Rev. Mod. Phys. 83 (2011) 11 [arXiv:0801.0287] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Harish-Chandra Research InstituteJhunsiIndia
  2. 2.University of LucknowLucknowIndia

Personalised recommendations