AdS pure spinor superstring in constant backgrounds

  • Osvaldo Chandia
  • L. Ibiapina Bevilaqua
  • Brenno Carlini Vallilo
Open Access
Article

Abstract

In this paper we study the pure spinor formulation of the superstring in AdS5 × S5 around point particle solutions of the classical equations of motion. As a particular example we quantize the pure spinor string in the BMN background.

Keywords

Superstrings and Heterotic Strings Conformal Field Models in String Theory BRST Symmetry 

References

  1. [1]
    I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    B.C. Vallilo, Flat currents in the classical AdS 5 × S 5 pure spinor superstring, JHEP 03 (2004) 037 [hep-th/0307018] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  3. [3]
    R. Benichou, First-principles derivation of the AdS/CFT Y-systems, JHEP 10 (2011) 112 [arXiv:1108.4927] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    N. Gromov, V. Kazakov and P. Vieira, Exact spectrum of anomalous dimensions of planar N =4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    N. Berkovits and O. Chandía, Superstring vertex operators in an AdS5 × S5 background, Nucl. Phys. B 596 (2001) 185 [hep-th/0009168] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    B.C. Vallilo, One loop conformal invariance of the superstring in an AdS 5 × S 5 background, JHEP 12 (2002) 042 [hep-th/0210064] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  8. [8]
    N. Berkovits, Quantum consistency of the superstring in AdS 5 × S 5 background, JHEP 03 (2005) 041 [hep-th/0411170] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    L. Mazzucato and B.C. Vallilo, On the non-renormalization of the AdS radius, JHEP 09 (2009) 056 [arXiv:0906.4572] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    O.A. Bedoya, D.Z. Marchioro, D.L. Nedel and B. Carlini Vallilo, Quantum current algebra for the AdS 5 × S 5 superstring, JHEP 08 (2010) 026 [arXiv:1003.0701] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    B.C. Vallilo and L. Mazzucato, The Konishi multiplet at strong coupling, JHEP 12 (2011) 029 [arXiv:1102.1219] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    R. Roiban and A.A. Tseytlin, Semiclassical string computation of strong-coupling corrections to dimensions of operators in Konishi multiplet, Nucl. Phys. B 848 (2011) 251 [arXiv:1102.1209] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    N. Gromov, D. Serban, I. Shenderovich and D. Volin, Quantum folded string and integrability: from finite size effects to Konishi dimension, JHEP 08 (2011) 046 [arXiv:1102.1040] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    N. Gromov, V. Kazakov and P. Vieira, Exact spectrum of planar \( \mathcal{N} \) = 4 supersymmetric Yang-Mills theory: Konishi dimension at any coupling, Phys. Rev. Lett. 104 (2010) 211601 [arXiv:0906.4240] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    Y. Aisaka, L.I. Bevilaqua and B.C. Vallilo, On semiclassical analysis of pure spinor superstring in an AdS 5 × S 5 background, JHEP 09 (2012) 068 [arXiv:1206.5134] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    A. Cagnazzo, D. Sorokin, A.A. Tseytlin and L. Wulff, Semiclassical equivalence of Green-Schwarz and pure-spinor/hybrid formulations of superstrings in AdS 5 × S 5 and AdS 2 × S 2 × T 6, J. Phys. A 46 (2013) 065401 [arXiv:1211.1554] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    M. Tonin, On semiclassical equivalence of Green-Schwarz and pure spinor strings in AdS 5 × S 5, J. Phys. A 46 (2013) 245401 [arXiv:1302.2488] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N =4 super Yang-Mills, JHEP 04 (2002) 013[hep-th/0202021][INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    N. Berkovits, Conformal field theory for the superstring in a Ramond-Ramond plane wave background, JHEP 04 (2002) 037 [hep-th/0203248] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    R.R. Metsaev and A.A. Tseytlin, Exactly solvable model of superstring in Ramond-Ramond plane wave background, Phys. Rev. D 65 (2002) 126004 [hep-th/0202109] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Mikhailov, Symmetries of massless vertex operators in AdS 5 × S 5, J. Geom. Phys. 62 (2012) 479 [arXiv:0903.5022] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  22. [22]
    O.A. Bedoya, L.I. Bevilaqua, A. Mikhailov and V.O. Rivelles, Notes on β-deformations of the pure spinor superstring in AdS 5 × S 5, Nucl. Phys. B 848 (2011) 155 [arXiv:1005.0049] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    A. Mikhailov, Finite dimensional vertex, JHEP 12 (2011) 005 [arXiv:1105.2231] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    O. Chandía, A. Mikhailov and B.C. Vallilo, A construction of integrated vertex operator in the pure spinor σ-model in AdS 5 × S 5, JHEP 11 (2013) 124 [arXiv:1306.0145] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    N. Berkovits, Simplifying and extending the AdS 5 × S 5 pure spinor formalism, JHEP 09 (2009) 051 [arXiv:0812.5074] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Osvaldo Chandia
    • 1
  • L. Ibiapina Bevilaqua
    • 2
  • Brenno Carlini Vallilo
    • 3
  1. 1.Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo IbáñezFacultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiagoChile
  2. 2.Escola de Ciências e TecnologiaUniversidade Federal do Rio Grande do NorteNatalBrazil
  3. 3.Facultad de Ciencias Exactas, Departamento de Ciencias FísicasUniversidad Andres BelloSantiagoChile

Personalised recommendations