Advertisement

Index theory and supersymmetry of 5D horizons

  • J. Grover
  • J. Gutowski
  • G. Papadopoulos
  • W. A. Sabra
Open Access
Article

Abstract

We prove that the near-horizon geometries of minimal gauged five-dimensional supergravity preserve at least half of the supersymmetry. If the near-horizon geometries preserve a larger fraction, then they are locally isometric to AdS 5. Our proof is based on Lichnerowicz type theorems for two horizon Dirac operators constructed from the supercovariant connection restricted to the horizon sections, and on an application of the index theorem. An application is that all half-supersymmetric five-dimensional horizons admit an sl(2, \( \mathbb{R} \)) symmetry subalgebra.

Keywords

Black Holes in String Theory Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G.W. Gibbons and P.K. Townsend, Vacuum interpolation in supergravity via super p-branes, Phys. Rev. Lett. 71 (1993) 3754 [hep-th/9307049] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    W. Israel, Event horizons in static vacuum space-times, Phys. Rev. 164 (1967) 1776 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    B. Carter, Axisymmetric Black Hole Has Only Two Degrees of Freedom, Phys. Rev. Lett. 26 (1971) 331 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S.W. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972) 152 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    D.C. Robinson, Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34 (1975) 905 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    W. Israel, Event horizons in static electrovac space-times, Commun. Math. Phys. 8 (1968) 245 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    P.O. Mazur, Proof of uniqueness of the Kerr-Newman black hole solution, J. Phys. A 15 (1982) 3173 [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    D. Robinson, Four decades of black hole uniqueness theorems, appeared in The Kerr spacetime: Rotating black holes in General Relativity, D.L. Wiltshire, M. Visser and S. M. Scott eds., Cambridge University Press, 2009, pg. 115.Google Scholar
  9. [9]
    G.W. Gibbons, D. Ida and T. Shiromizu, Uniqueness and nonuniqueness of static black holes in higher dimensions, Phys. Rev. Lett. 89 (2002) 041101 [hep-th/0206049] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    M. Rogatko, Uniqueness theorem of static degenerate and nondegenerate charged black holes in higher dimensions, Phys. Rev. D 67 (2003) 084025 [hep-th/0302091] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    M. Rogatko, Classification of Static Charged Black Holes in Higher Dimensions, Phys. Rev. D 73 (2006) 124027 [hep-th/0606116] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-Volume Effective Theory for Higher-Dimensional Black Holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of Blackfold Dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    H.S. Reall, Higher dimensional black holes and supersymmetry, Phys. Rev. D 68 (2003) 024024 [Erratum ibid. D 70 (2004) 089902] [hep-th/0211290] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Do supersymmetric anti-de Sitter black rings exist?, JHEP 02 (2007) 026 [hep-th/0611351] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    A. Sen, State Operator Correspondence and Entanglement in AdS 2 /CFT 1, Entropy 13 (2011) 1305 [arXiv:1101.4254] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    J. Gutowski and G. Papadopoulos, Index theory and dynamical symmetry enhancement of M-horizons, JHEP 05 (2013) 088 [arXiv:1303.0869] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    J. Gutowski and G. Papadopoulos, Topology of supersymmetric N = 1, D = 4 supergravity horizons, JHEP 11 (2010) 114 [arXiv:1006.4369] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    M.F. Atiyah and I.M. Singer, The Index of elliptic operators: 1, Annals Math. 87 (1968) 484.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    V. Moncrief and J. Isenberg, Symmetries of cosmological Cauchy horizons, Commun. Math. Phys. 89 (1983) 387 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    H. Friedrich, I. Racz and R.M. Wald, On the rigidity theorem for space-times with a stationary event horizon or a compact Cauchy horizon, Commun. Math. Phys. 204 (1999) 691 [gr-qc/9811021] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    J. Grover, J.B. Gutowski and W. Sabra, Vanishing preons in the fifth dimension, Class. Quant. Grav. 24 (2007) 417 [hep-th/0608187] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    J.M. Figueroa-O’Farrill, J. Gutowski and W. Sabra, The Return of the four- and five-dimensional preons, Class. Quant. Grav. 24 (2007) 4429 [arXiv:0705.2778] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    J. Gutowski and G. Papadopoulos, M-Horizons, JHEP 12 (2012) 100 [arXiv:1207.7086] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    M. Günaydin, G. Sierra and P.K. Townsend, The Geometry of N = 2 Maxwell-Einstein Supergravity and Jordan Algebras, Nucl. Phys. B 242 (1984) 244 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.B. Gutowski and H.S. Reall, Supersymmetric AdS 5 black holes, JHEP 02 (2004) 006 [hep-th/0401042] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • J. Grover
    • 1
  • J. Gutowski
    • 2
  • G. Papadopoulos
    • 3
  • W. A. Sabra
    • 4
  1. 1.Physics DepartmentUniversity of Aveiro and I3NAveiroPortugal
  2. 2.Department of MathematicsUniversity of SurreyGuildfordU.K.
  3. 3.Department of MathematicsKing’s College LondonLondonU.K.
  4. 4.Centre for Advanced Mathematical Sciences and Physics DepartmentAmerican University of BeirutBeirutLebanon

Personalised recommendations