Advertisement

On deformations of AdS n × S n supercosets

  • B. Hoare
  • R. Roiban
  • A. A. Tseytlin
Open Access
Article

Abstract

We study the deformed AdS 5 × S 5 supercoset model of arXiv:1309.5850 which depends on one parameter κ and has classical quantum group symmetry. We confirm the conjecture that in the “maximal” deformation limit, κ → ∞, this model is T-dual to “flipped” double Wick rotation of the target space AdS 5 × S 5, i.e. dS 5 × H 5 space supported by an imaginary 5-form flux. In the imaginary deformation limit, κi, the corresponding target space metric is of a pp-wave type and thus the resulting light-cone gauge S-matrix becomes relativistically invariant. Omitting non-unitary contributions of imaginary WZ terms, we find that this tree-level S-matrix is equivalent to that of the generalized sine-Gordon model representing the Pohlmeyer reduction of the undeformed AdS 5 × S 5 superstring model. We also study in some detail similar deformations of the AdS 3 × S 3 and AdS 2 × S 2 supercosets. The bosonic part of the deformed AdS 3 × S 3 model happens to be equivalent to the symmetric case of the sum of the Fateev integrable deformation of the SL(2) and SU(2) principal chiral models, while in the AdS 2 × S 2 case the role of the Fateev model is played by the 2d “sausage” model. The κ = i limits are again directly related to the Pohlmeyer reductions of the corresponding AdS n × S n supercosets: (2,2) super sine-Gordon model and its complex sine-Gordon analog. We also discuss possible deformations of AdS 3 × S 3 with more than one parameter.

Keywords

Conformal Field Models in String Theory Integrable Field Theories AdSCFT Correspondence Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    S.A. Frolov, R. Roiban and A.A. Tseytlin, Gauge-string duality for superconformal deformations of N = 4 super Yang-Mills theory, JHEP 07 (2005) 045 [hep-th/0503192] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069 [hep-th/0503201] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    L.F. Alday, G. Arutyunov and S. Frolov, Green-Schwarz strings in TsT-transformed backgrounds, JHEP 06 (2006) 018 [hep-th/0512253] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    R. Ricci, A.A. Tseytlin and M. Wolf, On T-duality and integrability for strings on AdS backgrounds, JHEP 12 (2007) 082 [arXiv:0711.0707] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual superconformal symmetry from AdS 5 × S 5 superstring integrability, Phys. Rev. D 78 (2008) 126004 [arXiv:0807.3228] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS 5 × S 5 superstring action, Phys. Rev. Lett. 112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    F. Delduc, M. Magro and B. Vicedo, On classical q-deformations of integrable σ-models, JHEP 11 (2013) 192 [arXiv:1308.3581] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    C. Klimčík, Yang-Baxter σ-models and dS/AdS T duality, JHEP 12 (2002) 051 [hep-th/0210095] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C. Klimčík, On integrability of the Yang-Baxter σ-model, J. Math. Phys. 50 (2009) 043508 [arXiv:0802.3518] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    G. Arutyunov, R. Borsato and S. Frolov, S-matrix for strings on η-deformed AdS 5 × S 5, JHEP 04 (2014) 002 [arXiv:1312.3542] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    I. Kawaguchi, T. Matsumoto and K. Yoshida, The classical origin of quantum affine algebra in squashed σ-models, JHEP 04 (2012) 115 [arXiv:1201.3058] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    I. Kawaguchi and K. Yoshida, A deformation of quantum affine algebra in squashed WZNW models, arXiv:1311.4696 [INSPIRE].
  15. [15]
    I. Kawaguchi, T. Matsumoto and K. Yoshida, Jordanian deformations of the AdS 5 × S 5 superstring, JHEP 04 (2014) 153 [arXiv:1401.4855] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    I. Kawaguchi, T. Matsumoto and K. Yoshida, A Jordanian deformation of AdS space in type IIB supergravity, arXiv:1402.6147 [INSPIRE].
  17. [17]
    N. Beisert and P. Koroteev, Quantum deformations of the one-dimensional Hubbard model, J. Phys. A 41 (2008) 255204 [arXiv:0802.0777] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    N. Beisert, The classical trigonometric r-matrix for the quantum-deformed Hubbard chain, J. Phys. A 44 (2011) 265202 [arXiv:1002.1097] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    B. Hoare, T.J. Hollowood and J.L. Miramontes, q-deformation of the AdS 5 × S 5 superstring S-matrix and its relativistic limit, JHEP 03 (2012) 015 [arXiv:1112.4485] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    C.M. Hull, Timelike T duality, de Sitter space, large-N gauge theories and topological field theory, JHEP 07 (1998) 021 [hep-th/9806146] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    M. Grigoriev and A.A. Tseytlin, Pohlmeyer reduction of AdS 5 × S 5 superstring σ-model, Nucl. Phys. B 800 (2008) 450 [arXiv:0711.0155] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    A. Mikhailov and S. Schäfer-Nameki, Sine-Gordon-like action for the superstring in AdS 5 × S 5, JHEP 05 (2008) 075 [arXiv:0711.0195] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Grigoriev and A.A. Tseytlin, On reduced models for superstrings on AdS n × S n, Int. J. Mod. Phys. A 23 (2008) 2107 [arXiv:0806.2623] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    B. Hoare and A.A. Tseytlin, Tree-level S-matrix of Pohlmeyer reduced form of AdS 5 × S 5 superstring theory, JHEP 02 (2010) 094 [arXiv:0912.2958] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    B. Hoare and A.A. Tseytlin, Towards the quantum S-matrix of the Pohlmeyer reduced version of AdS 5 × S 5 superstring theory, Nucl. Phys. B 851 (2011) 161 [arXiv:1104.2423] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    A. Babichenko, B. Stefanski Jr. and K. Zarembo, Integrability and the AdS 3 /CF T 2 correspondence, JHEP 03 (2010) 058 [arXiv:0912.1723] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    N. Berkovits, M. Bershadsky, T. Hauer, S. Zhukov and B. Zwiebach, Superstring theory on AdS 2 × S 2 as a coset supermanifold, Nucl. Phys. B 567 (2000) 61 [hep-th/9907200] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    V.A. Fateev, The σ-model (dual) representation for a two-parameter family of integrable quantum field theories, Nucl. Phys. B 473 (1996) 509 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    S.L. Lukyanov, The integrable harmonic map problem versus Ricci flow, Nucl. Phys. B 865 (2012) 308 [arXiv:1205.3201] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    V.A. Fateev, E. Onofri and A.B. Zamolodchikov, The sausage model (integrable deformations of O(3) σ-model), Nucl. Phys. B 406 (1993) 521 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    C. Klimčík, Integrability of the bi-Yang-Baxter σ-model, arXiv:1402.2105 [INSPIRE].
  32. [32]
    I.V. Cherednik, Relativistically invariant quasiclassical limits of integrable two-dimensional quantum models, Theor. Math. Phys. 47 (1981) 422 [INSPIRE].CrossRefMathSciNetGoogle Scholar
  33. [33]
    A. Cagnazzo and K. Zarembo, B-field in AdS 3 /CF T 2 correspondence and integrability, JHEP 11 (2012) 133 [Erratum ibid. 04 (2013) 003] [arXiv:1209.4049] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    J.M. Maldacena and L. Maoz, Strings on pp waves and massive two-dimensional field theories, JHEP 12 (2002) 046 [hep-th/0207284] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    J.G. Russo and A.A. Tseytlin, A class of exact pp wave string models with interacting light cone gauge actions, JHEP 09 (2002) 035 [hep-th/0208114] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    I. Bakas and J. Sonnenschein, On integrable models from pp wave string backgrounds, JHEP 12 (2002) 049 [hep-th/0211257] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    M.T. Grisaru, P.S. Howe, L. Mezincescu, B. Nilsson and P.K. Townsend, N = 2 superstrings in a supergravity background, Phys. Lett. B 162 (1985) 116 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    K. Zarembo, Strings on semisymmetric superspaces, JHEP 05 (2010) 002 [arXiv:1003.0465] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    M. Blau, J.M. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, Penrose limits and maximal supersymmetry, Class. Quant. Grav. 19 (2002) L87 [hep-th/0201081] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    G. Arutynov, M. de Leeuw and S.J. van Tongeren, On the exact spectrum and mirror duality of the (AdS 5 × S 5)η superstring, arXiv:1403.6104 [INSPIRE].
  42. [42]
    G. Arutyunov and S. Frolov, On string S-matrix, bound states and TBA, JHEP 12 (2007) 024 [arXiv:0710.1568] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The quantum deformed mirror TBA I, JHEP 10 (2012) 090 [arXiv:1208.3478] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The quantum deformed mirror TBA II, JHEP 02 (2013) 012 [arXiv:1210.8185] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    B. Hoare, T.J. Hollowood and J.L. Miramontes, A relativistic relative of the magnon S-matrix, JHEP 11 (2011) 048 [arXiv:1107.0628] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    B. Hoare, T.J. Hollowood and J.L. Miramontes, Restoring unitarity in the q-deformed world-sheet S-matrix, JHEP 10 (2013) 050 [arXiv:1303.1447] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    K. Sfetsos and A.A. Tseytlin, Four-dimensional plane wave string solutions with coset CFT description, Nucl. Phys. B 427 (1994) 245 [hep-th/9404063] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  48. [48]
    B. Hoare, T.J. Hollowood and J.L. Miramontes, Bound states of the q-deformed AdS 5 × S 5 superstring S-matrix, JHEP 10 (2012) 076 [arXiv:1206.0010] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    B. Hoare and A.A. Tseytlin, On string theory on AdS 3 × S 3 × T 4 with mixed 3-form flux: tree-level S-matrix, Nucl. Phys. B 873 (2013) 682 [arXiv:1303.1037] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  50. [50]
    R. Squellari, Yang-Baxter σ model: quantum aspects, Nucl. Phys. B 881 (2014) 502 [arXiv:1401.3197] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    M. Goykhman and E. Ivanov, Worldsheet supersymmetry of Pohlmeyer-reduced AdS n × S n superstrings, JHEP 09 (2011) 078 [arXiv:1104.0706] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  52. [52]
    T.J. Hollowood and J.L. Miramontes, The AdS 5 × S 5 semi-symmetric space sine-Gordon theory, JHEP 05 (2011) 136 [arXiv:1104.2429] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    D.M. Schmidtt, Integrability vs supersymmetry: Poisson structures of the Pohlmeyer reduction, JHEP 11 (2011) 067 [arXiv:1106.4796] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    D. Sorokin, A. Tseytlin, L. Wulff and K. Zarembo, Superstrings in AdS 2 × S 2 × T 6, J. Phys. A 44 (2011) 275401 [arXiv:1104.1793] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  55. [55]
    R. Roiban and W. Siegel, Superstrings on AdS 5 × S 5 supertwistor space, JHEP 11 (2000) 024 [hep-th/0010104] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    T.J. Hollowood and J.L. Miramontes, Symplectic deformations of integrable field theories and AdS/CFT, arXiv:1403.1899 [INSPIRE].
  57. [57]
    A.A. Tseytlin, On auniversalclass of WZW type conformal models, Nucl. Phys. B 418 (1994) 173 [hep-th/9311062] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  58. [58]
    K. Sfetsos, Integrable interpolations: from exact CFTs to non-Abelian T-duals, Nucl. Phys. B 880 (2014) 225 [arXiv:1312.4560] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  59. [59]
    J.H. Horne and G.T. Horowitz, Exact black string solutions in three-dimensions, Nucl. Phys. B 368 (1992) 444 [hep-th/9108001] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  60. [60]
    A. Giveon and M. Roček, Generalized duality in curved string backgrounds, Nucl. Phys. B 380 (1992) 128 [hep-th/9112070] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S.F. Hassan and A. Sen, Marginal deformations of WZNW and coset models from O(d, d) transformation, Nucl. Phys. B 405 (1993) 143 [hep-th/9210121] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  62. [62]
    M. Henningson and C.R. Nappi, Duality, marginal perturbations and gauging, Phys. Rev. D 48 (1993) 861 [hep-th/9301005] [INSPIRE].ADSMathSciNetGoogle Scholar
  63. [63]
    E. Kiritsis, Exact duality symmetries in CFT and string theory, Nucl. Phys. B 405 (1993) 109 [hep-th/9302033] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  64. [64]
    G.T. Horowitz and A.A. Tseytlin, On exact solutions and singularities in string theory, Phys. Rev. D 50 (1994) 5204 [hep-th/9406067] [INSPIRE].ADSMathSciNetGoogle Scholar
  65. [65]
    S. Förste, A truly marginal deformation of SL(2, R) in a null direction, Phys. Lett. B 338 (1994) 36 [hep-th/9407198] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Institut für Physik, Humboldt-Universität zu BerlinBerlinGermany
  2. 2.Department of PhysicsThe Pennsylvania State UniversityUniversity ParkU.S.A
  3. 3.The Blackett LaboratoryImperial CollegeLondonU.K
  4. 4.Lebedev InstituteMoscowRussia

Personalised recommendations