Finding all flux vacua in an explicit example

  • Danny Martínez-Pedrera
  • Dhagash Mehta
  • Markus RummelEmail author
  • Alexander Westphal
Open Access


We explicitly construct all supersymmetric flux vacua of a particular Calabi-Yau compactification of type IIB string theory for a small number of flux carrying cycles and a given D3-brane tadpole. The analysis is performed in the large complex structure region by using the polynomial homotopy continuation method, which allows to find all stationary points of the polynomial equations that characterize the supersymmetric vacuum solutions. The number of vacua as a function of the D3 tadpole is in agreement with statistical studies in the literature. We calculate the available tuning of the cosmological constant from fluxes and extrapolate to scenarios with a larger number of flux carrying cycles. We also verify the range of scales for the moduli and gravitino masses recently found for a single explicit flux choice giving a Kähler uplifted de Sitter vacuum in the same construction.


Flux compactifications dS vacua in string theory Superstring Vacua 


  1. [1]
    Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE].
  2. [2]
    Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].
  3. [3]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].
  4. [4]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    T.W. Grimm and J. Louis, The effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 699 (2004) 387 [hep-th/0403067] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    J.R. Ellis, A. Lahanas, D.V. Nanopoulos and K. Tamvakis, No-scale supersymmetric Standard Model, Phys. Lett. B 134 (1984) 429 [INSPIRE].ADSGoogle Scholar
  9. [9]
    E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos, Naturally vanishing cosmological constant in N = 1 supergravity, Phys. Lett. B 133 (1983) 61 [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and α corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V. Balasubramanian and P. Berglund, Stringy corrections to Kähler potentials, SUSY breaking and the cosmological constant problem, JHEP 11 (2004) 085 [hep-th/0408054] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    M. Rummel and A. Westphal, A sufficient condition for de Sitter vacua in type IIB string theory, JHEP 01 (2012) 020 [arXiv:1107.2115] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    J. Louis, M. Rummel, R. Valandro and A. Westphal, Building an explicit de Sitter, JHEP 10 (2012) 163 [arXiv:1208.3208] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    C. Burgess, R. Kallosh and F. Quevedo, De Sitter string vacua from supersymmetric D terms, JHEP 10 (2003) 056 [hep-th/0309187] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    M. Haack, D. Krefl, D. Lüst, A. Van Proeyen and M. Zagermann, Gaugino condensates and D-terms from D7-branes, JHEP 01 (2007) 078 [hep-th/0609211] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-branes at del Pezzo singularities: global embedding and moduli stabilisation, JHEP 09 (2012) 019 [arXiv:1206.5237] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    O. Lebedev, H.P. Nilles and M. Ratz, De Sitter vacua from matter superpotentials, Phys. Lett. B 636 (2006) 126 [hep-th/0603047] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M. Cicoli, A. Maharana, F. Quevedo and C. Burgess, De Sitter string vacua from dilaton-dependent non-perturbative effects, JHEP 06 (2012) 011 [arXiv:1203.1750] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    J.L. Feng, J. March-Russell, S. Sethi and F. Wilczek, Saltatory relaxation of the cosmological constant, Nucl. Phys. B 602 (2001) 307 [hep-th/0005276] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    P. Candelas, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 2, Nucl. Phys. B 429 (1994) 626 [hep-th/9403187] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    B.R. Greene and M. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B 338 (1990) 15 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP 07 (2005) 066 [hep-th/0505160] [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    F. Denef, M.R. Douglas and B. Florea, Building a better racetrack, JHEP 06 (2004) 034 [hep-th/0404257] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    A.J. Sommese and C.W. Wampler, The numerical solution of systems of polynomials arising in engineering and science, World Scientific Publishing Company, Singapore (2005).zbMATHCrossRefGoogle Scholar
  30. [30]
    S. Ashok and M.R. Douglas, Counting flux vacua, JHEP 01 (2004) 060 [hep-th/0307049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    J.P. Conlon and F. Quevedo, On the explicit construction and statistics of Calabi-Yau flux vacua, JHEP 10 (2004) 039 [hep-th/0409215] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A.D. Linde and A. Westphal, Accidental inflation in string theory, JCAP 03 (2008) 005 [arXiv:0712.1610] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    J.J. Blanco-Pillado, M. Gomez-Reino and K. Metallinos, Accidental inflation in the landscape, JCAP 02 (2013) 034 [arXiv:1209.0796] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    D. Marsh, L. McAllister and T. Wrase, The wasteland of random supergravities, JHEP 03 (2012) 102 [arXiv:1112.3034] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    X. Chen, G. Shiu, Y. Sumitomo and S.-H. Henry Tye, A global view on the search for de Sitter vacua in (type IIA) string theory, JHEP 04 (2012) 026 [arXiv:1112.3338] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T.C. Bachlechner, D. Marsh, L. McAllister and T. Wrase, Supersymmetric vacua in random supergravity, JHEP 01 (2013) 136 [arXiv:1207.2763] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Y. Sumitomo and S.-H. Henry Tye, A stringy mechanism for a small cosmological constant, JCAP 08 (2012) 032 [arXiv:1204.5177] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Y. Sumitomo and S.-H. Henry Tye, A stringy mechanism for a small cosmological constantmulti-moduli cases, JCAP 02 (2013) 006 [arXiv:1209.5086] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Y. Sumitomo and S.-H. Henry Tye, Preference for a vanishingly small cosmological constant in supersymmetric vacua in a type IIB string theory model, Phys. Lett. B 723 (2013) 406 [arXiv:1211.6858] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  41. [41]
    M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Gukov, C. Vafa and E. Witten, CFTs from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [INSPIRE].
  44. [44]
    L.E. Ibanez and A.M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012).zbMATHGoogle Scholar
  45. [45]
    P. Candelas, X. de la Ossa and F. Rodriguez-Villegas, Calabi-Yau manifolds over finite fields. 1, hep-th/0012233 [INSPIRE].
  46. [46]
    A. Giryavets, S. Kachru, P.K. Tripathy and S.P. Trivedi, Flux compactifications on Calabi-Yau threefolds, JHEP 04 (2004) 003 [hep-th/0312104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    D. Mehta, Lattice vs. continuum: Landau gauge fixing andt Hooft-Polyakov monopoles, Ph.D. thesis, University of Adelaide, Australasian Digital Theses Program, Australia (2009).Google Scholar
  48. [48]
    D. Mehta, A. Sternbeck, L. von Smekal and A.G. Williams, Lattice Landau gauge and algebraic geometry, PoS(QCD-TNT09)025 [arXiv:0912.0450] [INSPIRE].
  49. [49]
    D. Mehta, Finding all the stationary points of a potential energy landscape via numerical polynomial homotopy continuation method, Phys. Rev. E 84 (2011) 025702 [arXiv:1104.5497] [INSPIRE].ADSGoogle Scholar
  50. [50]
    D. Mehta, Numerical polynomial homotopy continuation method and string vacua, Adv. High Energy Phys. 2011 (2011) 263937 [arXiv:1108.1201] [INSPIRE].Google Scholar
  51. [51]
    M. Kastner and D. Mehta, Phase transitions detached from stationary points of the energy landscape, Phys. Rev. Lett. 107 (2011) 160602 [arXiv:1108.2345] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    R. Nerattini, M. Kastner, D. Mehta and L. Casetti, Exploring the energy landscape of XY models, Phys. Rev. E 87 (2013) 032140 [arXiv:1211.4800] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M. Maniatis and D. Mehta, Minimizing Higgs potentials via numerical polynomial homotopy continuation, Eur. Phys. J. Plus 127 (2012) 91 [arXiv:1203.0409] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    D. Mehta, Y.-H. He and J.D. Hauenstein, Numerical algebraic geometry: a new perspective on string and gauge theories, JHEP 07 (2012) 018 [arXiv:1203.4235] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    C. Hughes, D. Mehta and J.-I. Skullerud, Enumerating Gribov copies on the lattice, Annals Phys. 331 (2013) 188 [arXiv:1203.4847] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  56. [56]
    D. Mehta, J.D. Hauenstein and M. Kastner, Energy landscape analysis of the two-dimensional nearest-neighbor ϕ 4 model, Phys. Rev. E 85 (2012) 061103 [arXiv:1202.3320] [INSPIRE].ADSGoogle Scholar
  57. [57]
    J. Hauenstein, Y.-H. He and D. Mehta, Numerical analyses on moduli space of vacua, arXiv:1210.6038 [INSPIRE].
  58. [58]
    T.Y. Li, Solving polynomial systems by the homotopy continuation method, Handbook of numerical analysis XI (2003) 209.Google Scholar
  59. [59]
    D.J. Bates, J.D. Hauenstein, A.J. Sommese and C.W. Wampler, Bertini: software for numerical algebraic geometry, available at
  60. [60]
    J. Verschelde, Algorithm 795: Phcpack: a general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Soft. 25 (1999) 251.zbMATHCrossRefGoogle Scholar
  61. [61]
    T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fujisawa and T. Mizutani, Phom: a polyhedral homotopy continuation method for polynomial systems, Computing 73 (2004) 57.MathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    T. Gao, T.Y. Li and M. Wu, Algorithm 846: Mixedvol: a software package for mixed-volume computation, ACM Trans. Math. Soft. 31 (2005) 555.MathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    D.N. Bernstein, The number of roots of a system of equations, Funct. Anal. Appl. 9 (1975) 183 [Funkts. Anal. Pril. 9 (1975) 1].Google Scholar
  64. [64]
    A.G. Khovanski, Newton polyhedra and the genus of complete intersections, Funct. Anal. Appl. 12 (1978) 38 [Funkts. Anal. Pril. 12 (1978) 51.Google Scholar
  65. [65]
    A.G. Kushnirenko, Newton polytopes and the Bezout theorem, Funct. Anal. Appl. 10 (1976) 233 [Funkts. Anal. Pril. 10 (1976) 82].Google Scholar
  66. [66]
    T. Li, T. Sauer and J. Yorke, The cheaters homotopy: an efficient procedure for solving systems of polynomial equations, SIAM J. Numer. Anal. 26 (1989) 1241.MathSciNetADSzbMATHCrossRefGoogle Scholar
  67. [67]
    T. Li and X. Wang, Nonlinear homotopies for solving deficient polynomial systems with parameters, SIAM J. Numer. Anal. 29 (1992) 1104.MathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    D.J. Bates, D.A. Brake and M.E. Niemerg., Efficient software for large-scale parameter homotopy problems, in preparation, (2012).Google Scholar
  69. [69]
    Y.-H. He, D. Mehta, M. Niemerg, M. Rummel and A. Valeanu, Exploring the potential energy landscape over a large parameter-space, arXiv:1301.0946 [INSPIRE].
  70. [70]
    A. Westphal, De Sitter string vacua from Kähler uplifting, JHEP 03 (2007) 102 [hep-th/0611332] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    H. Cohen, A course in computational algebraic number theory, Springer, Germany (1993).zbMATHCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Danny Martínez-Pedrera
    • 1
  • Dhagash Mehta
    • 2
  • Markus Rummel
    • 1
    Email author
  • Alexander Westphal
    • 3
  1. 1.II. Institut für Theoretische Physik der Universität HamburgHamburgGermany
  2. 2.Department of PhysicsSyracuse UniversitySyracuseU.S.A.
  3. 3.Deutsches Elektronen-Synchrotron DESY, Theory GroupHamburgGermany

Personalised recommendations