Advertisement

Higher derivative effects for 4d AdS gravity

  • Jelena Smolic
  • Marika Taylor
Article

Abstract

Motivated by holography we explore higher derivative corrections to four-dimensional Anti-de Sitter (AdS) gravity. We point out that in such a theory the variational problem is generically not well-posed given only a boundary condition for the metric. However, when one evaluates the higher derivative terms perturbatively on a leading order Einstein solution, the equations of motion are always second order and therefore the variational problem indeed requires only a boundary condition for the metric. The equations of motion required to compute the spectrum around the corrected background are still generically higher order, with the additional boundary conditions being associated with new operators in the dual conformal field theory. We discuss which higher derivative curvature invariants are expected to arise in the four-dimensional action from a top-down perspective and compute the corrections to planar AdS black holes and to the spectrum around AdS in various cases. Requiring that the dual theory is unitary strongly constrains the higher derivative terms in the action, as the operators associated with the extra boundary conditions generically have complex conformal dimensions and non-positive norms.

Keywords

Black Holes in String Theory AdS-CFT Correspondence 

References

  1. [1]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  2. [2]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    D. Anninos, S.A. Hartnoll and N. Iqbal, Holography and the Coleman-Mermin-Wagner theorem, Phys. Rev. D 82 (2010) 066008 [arXiv:1005.1973] [INSPIRE].ADSGoogle Scholar
  5. [5]
    E. Witten, Chiral Symmetry, the 1/n Expansion and the SU(N ) Thirring Model, Nucl. Phys. B 145 (1978) 110 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    P. Benincasa and A. Buchel, Transport properties of N = 4 supersymmetric Yang-Mills theory at finite coupling, JHEP 01 (2006) 103 [hep-th/0510041] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].ADSGoogle Scholar
  10. [10]
    R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Nojiri and S.D. Odintsov, Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining deconfining phases in dual CFT, Phys. Lett. B 521 (2001) 87 [Erratum ibid. B 542 (2002) 301] [hep-th/0109122] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    M. Cvetič, S. Nojiri and S.D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet gravity, Nucl. Phys. B 628 (2002) 295 [hep-th/0112045] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Nojiri and S.D. Odintsov, (Anti-) de Sitter black holes in higher derivative gravity and dual conformal field theories, Phys. Rev. D 66 (2002) 044012 [hep-th/0204112] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    Y. Cho and I.P. Neupane, Anti-de Sitter black holes, thermal phase transition and holography in higher curvature gravity, Phys. Rev. D 66 (2002) 024044 [hep-th/0202140] [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    I.P. Neupane, Black hole entropy in string generated gravity models, Phys. Rev. D 67 (2003) 061501 [hep-th/0212092] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    R. Gregory, S. Kanno and J. Soda, Holographic Superconductors with Higher Curvature Corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    C. Charmousis, Higher order gravity theories and their black hole solutions, Lect. Notes Phys. 769 (2009) 299 [arXiv:0805.0568] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear Viscosity from Gauss-Bonnet Gravity with a Dilaton Coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [INSPIRE].ADSGoogle Scholar
  19. [19]
    C. Charmousis, B. Gouteraux and E. Kiritsis, Higher-derivative scalar-vector-tensor theories: black holes, Galileons, singularity cloaking and holography, JHEP 09 (2012) 011 [arXiv:1206.1499] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    J. Bagger and N. Lambert, Comments on multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  26. [26]
    N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    W. Li, W. Song and A. Strominger, Chiral Gravity in Three Dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    H. Lü and C. Pope, Critical Gravity in Four Dimensions, Phys. Rev. Lett. 106 (2011) 181302 [arXiv:1101.1971] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    H. Lü, Y. Pang and C. Pope, Conformal Gravity and Extensions of Critical Gravity, Phys. Rev. D 84 (2011) 064001 [arXiv:1106.4657] [INSPIRE].ADSGoogle Scholar
  30. [30]
    K. Skenderis, M. Taylor and B.C. van Rees, Topologically Massive Gravity and the AdS/CFT Correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    K. Skenderis, M. Taylor and B.C. van Rees, AdS boundary conditions and the Topologically Massive Gravity/CFT correspondence, arXiv:0909.5617 [INSPIRE].
  32. [32]
    S. Deser, R. Jackiw and S. Templeton, Three-Dimensional Massive Gauge Theories, Phys. Rev. Lett. 48 (1982) 975 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    G. Gibbons and S. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    J.W. York, Conformatlly invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial value problem of general relativity, J. Math. Phys. 14 (1973) 456 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. [36]
    D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. [37]
    R.C. Myers, Higher derivative gravity, surface terms and string theory, Phys. Rev. D 36 (1987) 392 [INSPIRE].ADSGoogle Scholar
  38. [38]
    S. Hawking and J. Luttrell, Higher derivatives in quantum cosmology. 1. The isotropic case, Nucl. Phys. B 247 (1984) 250 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    M. Madsen and J.D. Barrow, De Sitter ground states and boundary terms in generalized gravity, Nucl. Phys. B 323 (1989) 242 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    O. Hohm and E. Tonni, A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds, JHEP 04 (2010) 093 [arXiv:1001.3598] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    G. Compere, P. McFadden, K. Skenderis and M. Taylor, The Holographic fluid dual to vacuum Einstein gravity, JHEP 07 (2011) 050 [arXiv:1103.3022] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    G. Compere, P. McFadden, K. Skenderis and M. Taylor, The relativistic fluid dual to vacuum Einstein gravity, JHEP 03 (2012) 076 [arXiv:1201.2678] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    P. Howe and D. Tsimpis, On higher order corrections in M-theory, JHEP 09 (2003) 038 [hep-th/0305129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    M. Cederwall, U. Gran, B.E. Nilsson and D. Tsimpis, Supersymmetric corrections to eleven-dimensional supergravity, JHEP 05 (2005) 052 [hep-th/0409107] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    Y. Hyakutake and S. Ogushi, Higher derivative corrections to eleven dimensional supergravity via local supersymmetry, JHEP 02 (2006) 068 [hep-th/0601092] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    Y. Hyakutake, Toward the Determination of R 3 F 2 Terms in M-theory, Prog. Theor. Phys. 118 (2007) 109 [hep-th/0703154] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  47. [47]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000)125 [hep-th/9812032] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  49. [49]
    K. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    K. Stelle, Classical Gravity with Higher Derivatives, Gen. Rel. Grav. 9 (1978) 353 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    S. Nojiri and S.D. Odintsov, Finite gravitational action for higher derivative and stringy gravities, Phys. Rev. D 62 (2000) 064018 [hep-th/9911152] [INSPIRE].MathSciNetADSGoogle Scholar
  52. [52]
    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. [53]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  54. [54]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].MathSciNetADSGoogle Scholar
  55. [55]
    N. Johansson, A. Naseh and T. Zojer, Holographic two-point functions for 4d log-gravity, JHEP 09 (2012) 114 [arXiv:1205.5804] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE].
  57. [57]
    T.P. Sotiriou and V. Faraoni, f (R) Theories Of Gravity, Rev. Mod. Phys. 82 (2010) 451 [arXiv:0805.1726] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  58. [58]
    A. De Felice and S. Tsujikawa, f (R) theories, Living Rev. Rel. 13 (2010) 3 [arXiv:1002.4928] [INSPIRE].Google Scholar
  59. [59]
    S. Nojiri and S.D. Odintsov, Unified cosmic history in modified gravity: from F (R) theory to Lorentz non-invariant models, Phys. Rept. 505 (2011) 59 [arXiv:1011.0544] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    S. Deser and B. Tekin, Shortcuts to high symmetry solutions in gravitational theories, Class. Quant. Grav. 20 (2003) 4877 [gr-qc/0306114] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  61. [61]
    S. de Haro, A. Sinkovics and K. Skenderis, On alpha-prime corrections to D-brane solutions, Phys. Rev. D 68 (2003) 066001 [hep-th/0302136] [INSPIRE].ADSGoogle Scholar
  62. [62]
    J. Carminati and R. McLenaghan, Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space, J. Math. Phys. 32 (1991) 3135.MathSciNetADSzbMATHCrossRefGoogle Scholar
  63. [63]
    A. Polishchuk, Massive symmetric tensor field on AdS, JHEP 07 (1999) 007 [hep-th/9905048] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on Massive 3D Gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].MathSciNetADSGoogle Scholar
  65. [65]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    K. Skenderis and P.K. Townsend, Hidden supersymmetry of domain walls and cosmologies, Phys. Rev. Lett. 96 (2006) 191301 [hep-th/0602260] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    P. McFadden and K. Skenderis, Holography for Cosmology, Phys. Rev. D 81 (2010) 021301 [arXiv:0907.5542] [INSPIRE].MathSciNetADSGoogle Scholar
  68. [68]
    P. McFadden and K. Skenderis, The Holographic Universe, J. Phys. Conf. Ser. 222 (2010) 012007 [arXiv:1001.2007] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsAmsterdamThe Netherlands
  2. 2.School of Mathematics, Highfield, University of SouthamptonSouthamptonU.K

Personalised recommendations