Advertisement

New \( \mathcal{N} \) =1 dualities

  • Abhijit GaddeEmail author
  • Kazunobu Maruyoshi
  • Yuji Tachikawa
  • Wenbin Yan
Article

Abstract

We show that the \( \mathcal{N} \) =1 supersymmetric SU(N) gauge theory with 2N flavors without superpotential has not only the standard Seiberg dual description but also another dual description involving two copies of the so-called T N theory. This is a natural generalization to N > 2 of a dual description of SU(2) gauge theory with 4 flavors found by Csaki, Schmaltz, Skiba and Terning. We also study dualities of other \( \mathcal{N} \) =1 SCFTs involving copies of T N theories. Our duality is the basic operation from which a recently-found web of \( \mathcal{N} \) =1 dualities obtained by compactifying M5-branes on Riemann surfaces can be derived field-theoretically.

Keywords

Supersymmetry and Duality Supersymmetric gauge theory Duality in Gauge Field Theories 

References

  1. [1]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    D. Gaiotto, \( \mathcal{N} \) = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    C. Csáki, M. Schmaltz, W. Skiba and J. Terning, Selfdual \( \mathcal{N} \) = 1 SUSY gauge theories, Phys. Rev. D 56 (1997) 1228 [hep-th/9701191] [INSPIRE].ADSGoogle Scholar
  4. [4]
    K.A. Intriligator and P. Pouliot, Exact superpotentials, quantum vacua and duality in supersymmetric SP(N(c)) gauge theories, Phys. Lett. B 353 (1995) 471 [hep-th/9505006] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    H. Georgi, Unparticle physics, Phys. Rev. Lett. 98 (2007) 221601 [hep-ph/0703260] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    P. Meade, N. Seiberg and D. Shih, General Gauge Mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  7. [7]
    P.C. Argyres and N. Seiberg, S-duality in \( \mathcal{N} \) = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    P.C. Argyres and J.R. Wittig, Infinite coupling duals of \( \mathcal{N} \) = 2 gauge theories and new rank 1 superconformal field theories, JHEP 01 (2008) 074 [arXiv:0712.2028] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    P.C. Argyres and J. Wittig, Mass deformations of four-dimensional, rank 1, \( \mathcal{N} \) = 2 superconformal field theories, arXiv:1007.5026 [INSPIRE].
  10. [10]
    O. Chacaltana and J. Distler, Tinkertoys for Gaiotto duality, JHEP 11 (2010) 099 [arXiv:1008.5203] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4d superconformal index from q-deformed 2d Yang-Mills, Phys. Rev. Lett. 106 (2011) 241602 [arXiv:1104.3850] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge Theories and Macdonald Polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. [13]
    D. Gaiotto, L. Rastelli and S.S. Razamat, Bootstrapping the superconformal index with surface defects, arXiv:1207.3577 [INSPIRE].
  14. [14]
    F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and \( \mathcal{N} \) = 1 dualities, JHEP 01 (2010) 088 [arXiv:0909.1327] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    I. Bah and B. Wecht, New \( \mathcal{N} \) = 1 Superconformal Field Theories In Four Dimensions, arXiv:1111.3402 [INSPIRE].
  16. [16]
    I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT Dual Pairs from M5-Branes on Riemann Surfaces, Phys. Rev. D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE].ADSGoogle Scholar
  17. [17]
    I. Bah, C. Beem, N. Bobev and B. Wecht, Four-dimensional SCFTs from M5-branes, JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    C. Beem and A. Gadde, The superconformal index of \( \mathcal{N} \) = 1 class S fixed points, arXiv:1212.1467 [INSPIRE].
  19. [19]
    P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    P.C. Argyres, M.R. Plesser, N. Seiberg and E. Witten, New \( \mathcal{N} \) = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 461 (1996) 71 [hep-th/9511154] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    D. Gaiotto, N. Seiberg and Y. Tachikawa, Comments on scaling limits of 4d \( \mathcal{N} \) = 2 theories, JHEP 01 (2011) 078 [arXiv:1011.4568] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    S. Giacomelli, Singular points in \( \mathcal{N} \) = 2 SQCD, JHEP 09 (2012) 040 [arXiv:1207.4037] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    P.C. Argyres, K. Maruyoshi and Y. Tachikawa, Quantum Higgs branches of isolated \( \mathcal{N} \) = 2 superconformal field theories, JHEP 10 (2012) 054 [arXiv:1206.4700] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P.C. Argyres, M.R. Plesser and N. Seiberg, The moduli space of vacua of \( \mathcal{N} \) = 2 SUSY QCD and duality in \( \mathcal{N} \) = 1 SUSY QCD, Nucl. Phys. B 471 (1996) 159 [hep-th/9603042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    P.C. Argyres, K.A. Intriligator, R.G. Leigh and M.J. Strassler, On inherited duality in \( \mathcal{N} \) = 1 D = 4 supersymmetric gauge theories, JHEP 04 (2000) 029 [hep-th/9910250] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and \( \mathcal{N} \) = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6d N = (2, 0) theories, Int. J. Mod. Phys. A 28 (2013) 1340006 [arXiv:1203.2930] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J.J. Heckman, Y. Tachikawa, C. Vafa and B. Wecht, \( \mathcal{N} \) = 1 SCFTs from Brane Monodromy, JHEP 11 (2010) 132 [arXiv:1009.0017] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    D. Gaiotto and J. Maldacena, The Gravity duals of \( \mathcal{N} \) = 2 superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Gaiotto and S.S. Razamat, Exceptional indices, JHEP 05 (2012) 145 [arXiv:1203.5517] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    V. Spiridonov and G. Vartanov, Superconformal indices for \( \mathcal{N} \) = 1 theories with multiple duals, Nucl. Phys. B 824 (2010) 192 [arXiv:0811.1909] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    T. Dimofte and D. Gaiotto, An E7 surprise, JHEP 10 (2012) 129 [arXiv:1209.1404] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Y. Tachikawa and B. Wecht, Explanation of the Central Charge Ratio 27/32 in Four-Dimensional Renormalization Group Flows between Superconformal Theories, Phys. Rev. Lett. 103 (2009) 061601 [arXiv:0906.0965] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    D. Anselmi, D. Freedman, M.T. Grisaru and A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    D. Anselmi, J. Erlich, D. Freedman and A. Johansen, Positivity constraints on anomalies in supersymmetric gauge theories, Phys. Rev. D 57 (1998) 7570 [hep-th/9711035] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    N. Mekareeya, J. Song and Y. Tachikawa, 2d TQFT structure of the superconformal indices with outer-automorphism twists, JHEP 03 (2013) 171 [arXiv:1212.0545] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K. Maruyoshi, M. Taki, S. Terashima and F. Yagi, New Seiberg dualities from \( \mathcal{N} \) = 2 dualities, JHEP 09 (2009) 086 [arXiv:0907.2625] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Abhijit Gadde
    • 1
    Email author
  • Kazunobu Maruyoshi
    • 1
  • Yuji Tachikawa
    • 2
    • 3
  • Wenbin Yan
    • 1
  1. 1.California Institute of TechnologyPasadenaU.S.A.
  2. 2.Department of Physics, Faculty of ScienceUniversity of TokyoTokyoJapan
  3. 3.Institute for the Physics and Mathematics of the UniverseUniversity of Tokyo, KashiwaChibaJapan

Personalised recommendations