Branes, weights and central charges

Article

Abstract

We study the properties of half-supersymmetric branes in string theory with 32 supercharges from a purely group-theoretical point of view using the U-duality symmetry of maximal supergravity and the R-symmetry of the corresponding supersymmetry algebra. In particular, we show that half-supersymmetric branes are always associated to the longest weights of the U-duality representation of the potentials coupling to them. We compare the features of branes with three or more transverse directions (that we call “standard” branes) to those with two or less transverse directions (that we denominate “non-standard” branes). We show why the BPS condition of the non-standard branes is in general degenerate and for each case we calculate this degeneracy. We furthermore show how the orbits of multi-charge configurations of non-standard branes can be calculated and give the U-duality invariants describing these orbits. We show that different orbits of non-standard branes can have the same BPS condition.

Keywords

p-branes D-branes 

References

  1. [1]
    E. Bergshoeff, E. Sezgin and P. Townsend, Supermembranes and eleven-dimensional supergravity, Phys. Lett. B 189 (1987) 75 [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    J. Polchinski, Dirichlet branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  5. [5]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  6. [6]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    J. de Azcarraga, J.P. Gauntlett, J. Izquierdo and P. Townsend, Topological extensions of the supersymmetry algebra for extended objects, Phys. Rev. Lett. 63 (1989) 2443 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    B.R. Greene, A.D. Shapere, C. Vafa and S.-T. Yau, Stringy cosmic strings and noncompact Calabi-Yau manifolds, Nucl. Phys. B 337 (1990) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    G.W. Gibbons, M.B. Green and M.J. Perry, Instantons and seven-branes in type IIB superstring theory, Phys. Lett. B 370 (1996) 37 [hep-th/9511080] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    E.A. Bergshoeff, T. Ort´ın and F. Riccioni, Defect branes, Nucl. Phys. B 856 (2012) 210 [arXiv:1109.4484] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    E.A. Bergshoeff and F. Riccioni, D-brane Wess-Zumino terms and U-duality, JHEP 11 (2010) 139 [arXiv:1009.4657] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan and F. Riccioni, IIB supergravity revisited, JHEP 08 (2005) 098 [hep-th/0506013] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan, T. Ortín and F. Riccioni, IIA ten-forms and the gauge algebras of maximal supergravity theories, JHEP 07 (2006) 018 [hep-th/0602280] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    E. Bergshoeff, J. Hartong, P. Howe, T. Ort´ın and F. Riccioni, IIA/IIB supergravity and ten-forms, JHEP 05 (2010) 061 [arXiv:1004.1348] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    F. Riccioni and P.C. West, The E 11 origin of all maximal supergravities, JHEP 07 (2007) 063 [arXiv:0705.0752] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    E.A. Bergshoeff, I. De Baetselier and T.A. Nutma, E 11 and the embedding tensor, JHEP 09 (2007) 047 [arXiv:0705.1304] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  19. [19]
    B. de Wit, H. Nicolai and H. Samtleben, Gauged supergravities, tensor hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    E.A. Bergshoeff and F. Riccioni, The D-brane U-scan, arXiv:1109.1725 [INSPIRE].
  21. [21]
    E.A. Bergshoeff, A. Marrani and F. Riccioni, Brane orbits, Nucl. Phys. B 861 (2012) 104 [arXiv:1201.5819] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    A. Kleinschmidt, Counting supersymmetric branes, JHEP 10 (2011) 144 [arXiv:1109.2025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    E.A. Bergshoeff, A. Kleinschmidt and F. Riccioni, Supersymmetric domain walls, Phys. Rev. D 86 (2012) 085043 [arXiv:1206.5697] [INSPIRE].ADSGoogle Scholar
  24. [24]
    E.A. Bergshoeff and F. Riccioni, Heterotic wrapping rules, JHEP 01 (2013) 005 [arXiv:1210.1422] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    H. Lü, C. Pope and K. Stelle, Multiplet structures of BPS solitons, Class. Quant. Grav. 15 (1998) 537 [hep-th/9708109] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  26. [26]
    S. Ferrara and J.M. Maldacena, Branes, central charges and U duality invariant BPS conditions, Class. Quant. Grav. 15 (1998) 749 [hep-th/9706097] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  27. [27]
    R.N. Cahn, Semisimple Lie algebras and their representations, Frontiers in Physics volume 59, Benjamin/Cummings, Menlo Park U.S.A. (1984).Google Scholar
  28. [28]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan, T. Ortín and F. Riccioni, SL(2, \( \mathbb{R} \))-invariant IIB brane actions, JHEP 02 (2007) 007 [hep-th/0611036] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Ferrara and M. Günaydin, Orbits of exceptional groups, duality and BPS states in string theory, Int. J. Mod. Phys. A 13 (1998) 2075 [hep-th/9708025] [INSPIRE].ADSGoogle Scholar
  30. [30]
    G. Bossard and H. Nicolai, Multi-black holes from nilpotent Lie algebra orbits, Gen. Rel. Grav. 42 (2010) 509 [arXiv:0906.1987] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  31. [31]
    L. Borsten et al., Observations on integral and continuous U-duality orbits in N = 8 supergravity, Class. Quant. Grav. 27 (2010) 185003 [arXiv:1002.4223] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    F. Riccioni, A. Van Proeyen and P.C. West, Real forms of very extended Kac-Moody algebras and theories with eight supersymmetries, JHEP 05 (2008) 079 [arXiv:0801.2763] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P.C. West, E 11 origin of brane charges and U-duality multiplets, JHEP 08 (2004) 052 [hep-th/0406150] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    P.C. West, The IIA, IIB and eleven-dimensional theories and their common E 11 origin, Nucl. Phys. B 693 (2004) 76 [hep-th/0402140] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    F. Englert and L. Houart, G+++ invariant formulation of gravity and M-theories: Exact intersecting brane solutions, JHEP 05 (2004) 059 [hep-th/0405082] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    P.P. Cook, Bound states of string theory and beyond, JHEP 03 (2012) 028 [arXiv:1109.6595] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. de Boer and M. Shigemori, Exotic branes in string theory, arXiv:1209.6056 [INSPIRE].
  38. [38]
    E.A. Bergshoeff and F. Riccioni, Dual doubled geometry, Phys. Lett. B 702 (2011) 281 [arXiv:1106.0212] [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    E.A. Bergshoeff and F. Riccioni, Branes and wrapping rules, Phys. Lett. B 704 (2011) 367 [arXiv:1108.5067] [INSPIRE].MathSciNetADSGoogle Scholar
  40. [40]
    C. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    C.M. Hull, Doubled geometry and T-Folds, JHEP 07 (2007) 080 [hep-th/0605149] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    C. Hull and R. Reid-Edwards, Gauge symmetry, T-duality and doubled geometry, JHEP 08 (2008) 043 [arXiv:0711.4818] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    E.A. Bergshoeff and F. Riccioni, String solitons and T-duality, JHEP 05 (2011) 131 [arXiv:1102.0934] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Eric A. Bergshoeff
    • 1
  • Fabio Riccioni
    • 2
  • Luca Romano
    • 2
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.INFN Sezione di Roma, Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations