Advertisement

Hyperscaling violation from supergravity

  • Eric PerlmutterEmail author
Article

Abstract

In recent applications of AdS/CFT to condensed matter physics, a metric that transforms covariantly under dilatation has been argued to signal hyperscaling violation in a dual quantum field theory. We contextualize and introduce large, in some cases infinite, families of supergravity solutions with this property, focusing on scale covariant generalizations of AdS and Schrödinger spacetimes. These embeddings rely on various aspects of dimensional reduction and flux compactification of eleven-dimensional supergravity. Our top-down approach can be viewed as a partial holographic classification of the landscape of strongly coupled, UV complete quantum field theories with hyperscaling violation.

Keywords

Holography and condensed matter physics (AdS/CMT) p-branes Gaugegravity correspondence 

References

  1. [1]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    E. Shaghoulian, Holographic entanglement entropy and Fermi surfaces, JHEP 05 (2012) 065 [arXiv:1112.2702] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    S.A. Hartnoll and E. Shaghoulian, Spectral weight in holographic scaling geometries, arXiv:1203.4236 [INSPIRE].
  5. [5]
    H. Singh, Lifshitz/Schrödinger Dp-branes and dynamical exponents, arXiv:1202.6533 [INSPIRE].
  6. [6]
    K. Narayan, On Lifshitz scaling and hyperscaling violation in string theory, Phys. Rev. D 85 (2012) 106006 [arXiv:1202.5935] [INSPIRE].ADSGoogle Scholar
  7. [7]
    P. Dey and S. Roy, Lifshitz-like space-time from intersecting branes in string/M theory, arXiv:1203.5381 [INSPIRE].
  8. [8]
    P. Dey and S. Roy, Intersecting D-branes and Lifshitz-like space-time, arXiv:1204.4858 [INSPIRE].
  9. [9]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    P. Koroteev and M. Libanov, On existence of self-tuning solutions in static braneworlds without singularities, JHEP 02 (2008) 104 [arXiv:0712.1136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  12. [12]
    S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. Perlmutter, Domain wall holography for finite temperature scaling solutions, JHEP 02 (2011) 013 [arXiv:1006.2124] [INSPIRE].ADSGoogle Scholar
  15. [15]
    H. Singh, Special limits and non-relativistic solutions, JHEP 12 (2010) 061 [arXiv:1009.0651] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B.S. Kim, Schrödinger holography with and without hyperscaling violation, arXiv:1202.6062 [INSPIRE].
  17. [17]
    D. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    L. Mazzucato, Y. Oz and S. Theisen, Non-relativistic branes, JHEP 04 (2009) 073 [arXiv:0810.3673] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    B. Gouteraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, JHEP 01 (2012) 089 [arXiv:1110.2320] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    S. Sachdev, The quantum phases of matter, arXiv:1203.4565 [INSPIRE].
  22. [22]
    H. Lü, C. Pope and P. Townsend, Domain walls from Anti-de Sitter space-time, Phys. Lett. B 391 (1997) 39 [hep-th/9607164] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P. Kraus and E. Perlmutter, Universality and exactness of Schrödinger geometries in string and M-theory, JHEP 05 (2011) 045 [arXiv:1102.1727] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    H. Lü, C. Pope, E. Sezgin and K. Stelle, Stainless super p-branes, Nucl. Phys. B 456 (1995) 669 [hep-th/9508042] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H. Lü and C. Pope, P-brane solitons in maximal supergravities, Nucl. Phys. B 465 (1996) 127 [hep-th/9512012] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    H. Lü, C. Pope, T.A. Tran and K. Xu, Classification of p-branes, NUTs, waves and intersections, Nucl. Phys. B 511 (1998) 98 [hep-th/9708055] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Cvetič, H. Lü and C. Pope, Domain walls with localized gravity and domain wall/QFT correspondence, Phys. Rev. D 63 (2001) 086004 [hep-th/0007209] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Duff, H. Lü and C. Pope, The black branes of M-theory, Phys. Lett. B 382 (1996) 73 DOI:dx.doi.org [hep-th/9604052] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    H. Lü and C. Pope, p-brane taxonomy, hep-th/9702086 [INSPIRE].
  31. [31]
    I. Lavrinenko, H. Lü and C. Pope, From topology to generalized dimensional reduction, Nucl. Phys. B 492 (1997) 278 [hep-th/9611134] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    W. Song and A. Strominger, Warped AdS 3 /dipole-CFT duality, JHEP 05 (2012) 120 [arXiv:1109.0544] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    S.A. Hartnoll and K. Yoshida, Families of IIB duals for nonrelativistic CFTs, JHEP 12 (2008) 071 [arXiv:0810.0298] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    A. Donos and J.P. Gauntlett, Supersymmetric solutions for non-relativistic holography, JHEP 03 (2009) 138 [arXiv:0901.0818] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    N. Bobev, A. Kundu and K. Pilch, Supersymmetric IIB solutions with Schrödinger symmetry, JHEP 07 (2009) 107 [arXiv:0905.0673] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    A. Donos and J.P. Gauntlett, Solutions of type IIB and D = 11 supergravity with Schrödinger(z) symmetry, JHEP 07 (2009) 042 [arXiv:0905.1098] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    J. Jeong, H.-C. Kim, S. Lee, E. O Colgain and H. Yavartanoo, Schrödinger invariant solutions of M-theory with enhanced supersymmetry, JHEP 03 (2010) 034 [arXiv:0911.5281] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    F. Aprile and J.G. Russo, Models of holographic superconductivity, Phys. Rev. D 81 (2010) 026009 [arXiv:0912.0480] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Cvetič, J.T. Liu, H. Lü and C. Pope, Domain wall supergravities from sphere reduction, Nucl. Phys. B 560 (1999) 230 [hep-th/9905096] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    N. Bobev and B.C. van Rees, Schrödinger deformations of AdS 3 × S 3, JHEP 08 (2011) 062 [arXiv:1102.2877] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Donos and J.P. Gauntlett, Schrödinger invariant solutions of type IIB with enhanced supersymmetry, JHEP 10 (2009) 073 [arXiv:0907.1761] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].MathSciNetADSGoogle Scholar
  46. [46]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [INSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    N. Bobev, A. Kundu, K. Pilch and N.P. Warner, Minimal holographic superconductors from maximal supergravity, JHEP 03 (2012) 064 [arXiv:1110.3454] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    A. Donos and J.P. Gauntlett, Lifshitz solutions of D = 10 and D = 11 supergravity, JHEP 12 (2010) 002 [arXiv:1008.2062] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    D. Cassani and A.F. Faedo, Constructing Lifshitz solutions from AdS, JHEP 05 (2011) 013 [arXiv:1102.5344] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    H. Boonstra, K. Skenderis and P. Townsend, The domain wall/QFT correspondence, JHEP 01 (1999) 003 [hep-th/9807137] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    E. Elizalde, M. Lygren and D. Vassilevich, Antisymmetric tensor fields on spheres: functional determinants and nonlocal counterterms, J. Math. Phys. 37 (1996) 3105 [hep-th/9602113] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesU.S.A.

Personalised recommendations