T-folds, doubled geometry, and the SU(2) WZW model



The SU(2) WZW model at large level N can be interpreted semiclassically as string theory on S3 with N units of Neveu-Schwarz H-flux. While globally geometric, the model nevertheless exhibits an interesting doubled geometry possessing features in common with nongeometric string theory compactifications, for example, nonzero Q-flux. Therefore, it can serve as a fertile testing ground through which to improve our understanding of more exotic compactifications, in a context in which we have a firm understanding of the background from standard techniques. Three frameworks have been used to systematize the study of nongeometric backgrounds: the T-fold construction, Hitchin’s generalized geometry, and fully doubled geometry. All of these double the standard description in some way, in order to geometrize the combined metric and Neveu Schwarz B-field data. We present the T-fold and fully doubled descriptions of WZW models, first for SU(2) and then for general group. Applying the formalism of Hull and Reid-Edwards, we indeed recover the physical metric and H-flux of the WZW model from the doubled description. As additional checks, we reproduce the abelian T-duality group and known semiclassical spectrum of D-branes.


Flux compactifications Space-Time Symmetries Superstring Vacua String Duality 


  1. [1]
    C. Albertsson, T. Kimura and R.A. Reid-Edwards, D-branes and doubled geometry, JHEP 04 (2009) 113 [arXiv:0806.1783] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    P.S. Aspinwall, C. Lütken and G.G. Ross, Construction and couplings of mirror manifolds, Phys. Lett. B 241 (1990) 373 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S.D. Avramis, J.-P. Derendinger and N. Prezas, Conformal chiral boson models on twisted doubled tori and non-geometric string vacua, Nucl. Phys. B 827 (2010) 281 [arXiv:0910.0431] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    K. Becker and M. Becker, M theory on eight manifolds, Nucl. Phys. B 477 (1996) 155 [hep-th/9605053] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    P. Bordalo, Discrete torsion and WZW orbifolds, Phys. Lett. B 582 (2004) 86 [hep-th/0310029] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    T. Bridgeland et al., Dirichlet branes and mirror symmetry, AMS, Providence U.S.A. (2009).MATHGoogle Scholar
  7. [7]
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    P. Candelas, M. Lynker and R. Schimmrigk, Calabi-Yau manifolds in weighted \( {\mathbb{P}^4} \), Nucl. Phys. B 341 (1990) 383 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    G.R. Cavalcanti and M. Gualtieri, Generalized complex geometry and T-duality, arXiv:1106.1747 [INSPIRE].
  10. [10]
    C.S. Chan, P.L. Paul and H.L. Verlinde, A note on warped string compactification, Nucl. Phys. B 581 (2000) 156 [hep-th/0003236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP 09 (2003) 054 [hep-th/0210209] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds, JHEP 05 (2006) 009 [hep-th/0512005] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    G. Dall’Agata and N. Prezas, Worldsheet theories for non-geometric string backgrounds, JHEP 08 (2008) 088 [arXiv:0806.2003] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    F. Denef, Les Houches lectures on constructing string vacua, arXiv:0803.1194 [INSPIRE].
  16. [16]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, New York U.S.A. (1997).CrossRefMATHGoogle Scholar
  17. [17]
    J. Distler, Topological T-duality, entry in Musings blog, http://golem.ph.utexas.edu/∼distler/blog/archives/000837.html, June 10 2006, accessed April 7 2011.
  18. [18]
    G. Felder, J. Fröhlich, J. Fuchs and C. Schweigert, The geometry of WZW branes, J. Geom. Phys. 34 (2000) 162 [hep-th/9909030] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  19. [19]
    S. Fidanza, R. Minasian and A. Tomasiello, Mirror symmetric SU(3) structure manifolds with NS fluxes, Commun. Math. Phys. 254 (2005) 401 [hep-th/0311122] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  20. [20]
    M.R. Gaberdiel, Abelian duality in WZW models, Nucl. Phys. B 471 (1996) 217 [hep-th/9601016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev. D 69 (2004) 086002 [hep-th/0302158] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    D. Gepner and E. Witten, String theory on group manifolds, Nucl. Phys. B 278 (1986) 493 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of N = 1 vacua, JHEP 11 (2005) 020 [hep-th/0505212] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Graña, J. Louis and D. Waldram, Hitchin functionals in N = 2 supergravity, JHEP 01 (2006) 008 [hep-th/0505264] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Graña, J. Louis and D. Waldram, SU(3) × SU(3) compactification and mirror duals of magnetic fluxes, JHEP 04 (2007) 101 [hep-th/0612237] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and non-geometric backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    B.R. Greene and M.R. Plesser, (2, 2) and (2, 0) superconformal orbifolds, HUTP-89/A043, Harvard University, Cambridge U.S.A. (1989).Google Scholar
  29. [29]
    B.R. Greene and M. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B 338 (1990) 15 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Oxford University, Oxford U.K. (2003) [math.DG/0401221] [INSPIRE].
  31. [31]
    S. Gukov, C. Vafa and E. Witten, CFTs from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [INSPIRE].
  32. [32]
    N. Halmagyi, Non-geometric backgrounds and the first order string σ-model, arXiv:0906.2891 [INSPIRE].
  33. [33]
    S. Hellerman, J. McGreevy and B. Williams, Geometric constructions of non-geometric string theories, JHEP 01 (2004) 024 [hep-th/0208174] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    S. Hellerman and J. Walcher, Worldsheet CFTs for flat monodrofolds, hep-th/0604191 [INSPIRE].
  35. [35]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    O. Hohm and S.K. Kwak, Double field theory formulation of heterotic strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    K. Hori et al., Mirror symmetry, AMS, Providence U.S.A. (2003).MATHGoogle Scholar
  41. [41]
    C. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    C.M. Hull, Doubled geometry and T-folds, JHEP 07 (2007) 080 [hep-th/0605149] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    C. Hull and R. Reid-Edwards, Gauge symmetry, T-duality and doubled geometry, JHEP 08 (2008) 043 [arXiv:0711.4818] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    C. Hull and R. Reid-Edwards, Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP 09 (2009) 014 [arXiv:0902.4032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    C. Jeschek and F. Witt, Generalised G 2 -structures and type IIB superstrings, JHEP 03 (2005) 053 [hep-th/0412280] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    S. Kachru, M.B. Schulz and S. Trivedi, Moduli stabilization from fluxes in a simple IIB orientifold, JHEP 10 (2003) 007 [hep-th/0201028] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    S. Kachru, M.B. Schulz, P.K. Tripathy and S.P. Trivedi, New supersymmetric string compactifications, JHEP 03 (2003) 061 [hep-th/0211182] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    M. Kato and T. Okada, D-branes on group manifolds, Nucl. Phys. B 499 (1997) 583 [hep-th/9612148] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    A. Lawrence, M.B. Schulz and B. Wecht, D-branes in nongeometric backgrounds, JHEP 07 (2006) 038 [hep-th/0602025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    A. Lawrence, T. Sander, M.B. Schulz and B. Wecht, Torsion and supersymmetry breaking, JHEP 07 (2008) 042 [arXiv:0711.4787] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    W. Lerche, C. Vafa and N.P. Warner, Chiral rings in N = 2 superconformal theories, Nucl. Phys. B 324 (1989) 427 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  56. [56]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J.M. Maldacena, G.W. Moore and N. Seiberg, Geometrical interpretation of D-branes in gauged WZW models, JHEP 07 (2001) 046 [hep-th/0105038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    J. McOrist, D.R. Morrison and S. Sethi, Geometries, non-geometries and fluxes, arXiv:1004.5447 [INSPIRE].
  59. [59]
    J. Polchinski, Dirichlet branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  60. [60]
    J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998).CrossRefGoogle Scholar
  61. [61]
    J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).CrossRefGoogle Scholar
  62. [62]
    R. Reid-Edwards, Flux compactifications, twisted tori and doubled geometry, JHEP 06 (2009) 085 [arXiv:0904.0380] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    R. Reid-Edwards, Bi-algebras, generalised geometry and T-duality, arXiv:1001.2479 [INSPIRE].
  64. [64]
    M.B. Schulz, Non-geometric compactifications: an overview, lecture notes for the RTG graduate summer school, geometry of quantum fields and strings, to appear, University of Pennsylvania, Philadelphia U.S.A. June 8–20 2009.Google Scholar
  65. [65]
    S. Sethi, C. Vafa and E. Witten, Constraints on low dimensional string compactifications, Nucl. Phys. B 480 (1996) 213 [hep-th/9606122] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    S. Stanciu, D-branes in group manifolds, JHEP 01 (2000) 025 [hep-th/9909163] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    A. Strominger and E. Witten, New manifolds for superstring compactification, Commun. Math. Phys. 101 (1985) 341 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T duality, Nucl. Phys. B 479 (1996) 243 [hep-th/9606040] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    A. Tomasiello, Topological mirror symmetry with fluxes, JHEP 06 (2005) 067 [hep-th/0502148] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    H.L. Verlinde, Holography and compactification, Nucl. Phys. B 580 (2000) 264 [hep-th/9906182] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of PhysicsBryn Mawr CollegeBryn MawrU.S.A.
  2. 2.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations