Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses

  • Francisco del Aguila
  • Alberto Aparici
  • Subhaditya Bhattacharya
  • Arcadi Santamaria
  • Jose Wudka
Article

Abstract

Neutrinoless double beta (0νββ) decay can in general produce electrons of either chirality, in contrast with the minimal Standard Model (SM) extension with only the addition of the Weinberg operator, which predicts two left-handed electrons in the final state. We classify the lepton number violating (LNV) effective operators with two leptons of either chirality but no quarks, ordered according to the magnitude of their contribution to 0νββ decay. We point out that, for each of the three chirality assignments, e L e L , e L e R and e R e R , there is only one LNV operator of the corresponding type to lowest order, and these have dimensions 5, 7 and 9, respectively. Neutrino masses are always induced by these extra operators but can be delayed to one or two loops, depending on the number of RH leptons entering in the operator. Then, the comparison of the 0νββ decay rate and neutrino masses should indicate the effective scenario at work, which confronted with the LHC searches should also eventually decide on the specific model elected by nature. We also list the SM additions generating these operators upon integration of the heavy modes, and discuss simple realistic examples of renormalizable theories for each case.

Keywords

Beyond Standard Model Neutrino Physics 

References

  1. [1]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  2. [2]
    R. Mohapatra et al., Theory of neutrinos: A White paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [INSPIRE].ADSGoogle Scholar
  3. [3]
    M. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].ADSGoogle Scholar
  4. [4]
    B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].ADSGoogle Scholar
  5. [5]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSMATHGoogle Scholar
  6. [6]
    T. Schwetz, M. Tortola and J. Valle, Where we are on θ 13 : addendum toGlobal neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011) 109401 [arXiv:1108.1376] [INSPIRE].ADSGoogle Scholar
  7. [7]
    R. Mohapatra and P. Pal, World Scientific Lecture Notes in Physics. Vol. 60: Massive neutrinos in physics and astrophysics, World Scientific, Singapore (1998).Google Scholar
  8. [8]
    G. Racah, On the symmetry of particle and antiparticle, Nuovo Cim. 14 (1937) 322 [INSPIRE].Google Scholar
  9. [9]
    W. Furry, On transition probabilities in double beta-disintegration, Phys. Rev. 56 (1939) 1184 [INSPIRE].ADSMATHGoogle Scholar
  10. [10]
    J. Vergados, The Neutrinoless double beta decay from a modern perspective, Phys. Rept. 361 (2002) 1 [hep-ph/0209347] [INSPIRE].ADSGoogle Scholar
  11. [11]
    I. Avignone, Frank T., S.R. Elliott and J. Engel, Double Beta Decay, Majorana Neutrinos and Neutrino Mass, Rev. Mod. Phys. 80 (2008) 481 [arXiv:0708.1033] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Barabash, Double beta decay experiments, Phys. Part. Nucl. 42 (2011) 613 [arXiv:1107.5663] [INSPIRE].Google Scholar
  13. [13]
    S.R. Elliott, Recent Progress in Double Beta Decay, Mod. Phys. Lett. A 27 (2012) 1230009 [arXiv:1203.1070] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Weinberg, Effective Gauge Theories, Phys. Lett. B 91 (1980) 51 [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Polchinski, Renormalization and Effective Lagrangians, Nucl. Phys. B 231 (1984) 269 [INSPIRE].ADSGoogle Scholar
  18. [18]
    H. Georgi, Effective field theory, Ann. Rev. Nucl. Part. Sci. 43 (1993) 209 [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Wudka, Electroweak effective Lagrangians, Int. J. Mod. Phys. A 9 (1994) 2301 [hep-ph/9406205] [INSPIRE].ADSGoogle Scholar
  20. [20]
    K. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys. B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].ADSGoogle Scholar
  21. [21]
    K.-w. Choi, K.S. Jeong and W.Y. Song, Operator analysis of neutrinoless double beta decay, Phys. Rev. D 66 (2002) 093007 [hep-ph/0207180] [INSPIRE].ADSGoogle Scholar
  22. [22]
    J. Engel and P. Vogel, Effective operators for double beta decay, Phys. Rev. C 69 (2004) 034304 [nucl-th/0311072] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. de Gouvêa and J. Jenkins, A Survey of Lepton Number Violation Via Effective Operators, Phys. Rev. D 77 (2008) 013008 [arXiv:0708.1344] [INSPIRE].ADSGoogle Scholar
  24. [24]
    K. Babu and J. Julio, Two-Loop Neutrino Mass Generation through Leptoquarks, Phys. B 841 (2010) 130 [arXiv:1006.1092] [INSPIRE].Google Scholar
  25. [25]
    M. Duerr, M. Lindner and A. Merle, On the Quantitative Impact of the Schechter-Valle Theorem, JHEP 06 (2011) 091 [arXiv:1105.0901] [INSPIRE].ADSGoogle Scholar
  26. [26]
    K. Babu and J. Julio, Radiative Neutrino Mass Generation through Vector-like Quarks, Phys. Rev. D 85 (2012) 073005 [arXiv:1112.5452] [INSPIRE].ADSGoogle Scholar
  27. [27]
    P. Minkowski, μeγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Gell-Mann, P. Ramond, and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [in Supergravity: Proceedings of the Supergravity Workshop at Stony Brook, P. van Nieuwenhuizen and D.Z. Freedman eds., North Holland Publ. Co., Amsterdam The netherlands (1979)].Google Scholar
  29. [29]
    T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Conf. Proc. C 7902131 (1979) 95.Google Scholar
  30. [30]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSGoogle Scholar
  31. [31]
    V. Tello, M. Nemevšek, F. Nesti, G. Senjanović and F. Vissani, Left-Right Symmetry: from LHC to Neutrinoless Double Beta Decay, Phys. Rev. Lett. 106 (2011) 151801 [arXiv:1011.3522] [INSPIRE].ADSGoogle Scholar
  32. [32]
    S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSGoogle Scholar
  33. [33]
    H. Weldon and A. Zee, Operator analysis of new physics, Nucl. Phys. B 173 (1980) 269 [INSPIRE].ADSGoogle Scholar
  34. [34]
    T. Appelquist and J. Carazzone, Infrared Singularities and Massive Fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].ADSGoogle Scholar
  35. [35]
    F. del Aguila, A. Aparici, S. Bhattacharya, A. Santamaria and J. Wudka, A realistic model of neutrino masses with a large neutrinoless double beta decay rate, JHEP 05 (2012) 133 [arXiv:1111.6960] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass and Oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [INSPIRE].
  37. [37]
    A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    K. Babu, Model ofCalculableMajorana Neutrino Masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].ADSGoogle Scholar
  39. [39]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].ADSGoogle Scholar
  40. [40]
    H. Klapdor-Kleingrothaus et al., Latest results from the Heidelberg-Moscow double beta decay experiment, Eur. Phys. J. A 12 (2001) 147 [hep-ph/0103062] [INSPIRE].ADSGoogle Scholar
  41. [41]
    IGEX collaboration, C. Aalseth et al., The IGEX Ge-76 neutrinoless double beta decay experiment: Prospects for next generation experiments, Phys. Rev. D 65 (2002) 092007 [hep-ex/0202026] [INSPIRE].ADSGoogle Scholar
  42. [42]
    K. Muto, E. Bender and H. Klapdor, Nuclear structure effects on the neutrinoless double beta decay, Z. Phys. A 334 (1989) 187 [INSPIRE].ADSGoogle Scholar
  43. [43]
    H. Pas, M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, Towards a superformula for neutrinoless double beta decay, Phys. Lett. B 453 (1999) 194 [INSPIRE].ADSGoogle Scholar
  44. [44]
    H. Pas, M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, A Superformula for neutrinoless double beta decay. 2. The Short range part, Phys. Lett. B 498 (2001) 35 [hep-ph/0008182] [INSPIRE].ADSGoogle Scholar
  45. [45]
    E. Ma, Naturally small seesaw neutrino mass with no new physics beyond the TeV scale, Phys. Rev. Lett. 86 (2001) 2502 [hep-ph/0011121] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Aoki, S. Kanemura and O. Seto, Neutrino mass, Dark Matter and Baryon Asymmetry via TeV-Scale Physics without Fine-Tuning, Phys. Rev. Lett. 102 (2009) 051805 [arXiv:0807.0361] [INSPIRE].ADSGoogle Scholar
  47. [47]
    W. Chao, Neutrino Masses and A TeV Scale Seesaw Mechanism, Phys. Rev. D 82 (2010) 016008 [arXiv:1003.1468] [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Ibarra, E. Molinaro and S. Petcov, TeV Scale See-Saw Mechanisms of Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos and (ββ)0ν -Decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M.-C. Chen and J. Huang, TeV Scale Models of Neutrino Masses and Their Phenomenology, Mod. Phys. Lett. A 26 (2011) 1147 [arXiv:1105.3188] [INSPIRE].ADSGoogle Scholar
  50. [50]
    J.F. Oliver and A. Santamaria, Neutrino masses from operator mixing, Phys. Rev. D 65 (2002) 033003 [hep-ph/0108020] [INSPIRE].ADSGoogle Scholar
  51. [51]
    C.-S. Chen, C. Geng and J. Ng, Unconventional Neutrino Mass Generation, Neutrinoless Double Beta Decays and Collider Phenomenology, Phys. Rev. D 75 (2007) 053004 [hep-ph/0610118] [INSPIRE].ADSGoogle Scholar
  52. [52]
    C.-S. Chen, C.-Q. Geng, J.N. Ng and J.M. Wu, Testing radiative neutrino mass generation at the LHC, JHEP 08 (2007) 022 [arXiv:0706.1964] [INSPIRE].ADSGoogle Scholar
  53. [53]
    W. Konetschny and W. Kummer, Nonconservation of Total Lepton Number with Scalar Bosons, Phys. Lett. B 70 (1977) 433 [INSPIRE].ADSGoogle Scholar
  54. [54]
    T. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  55. [55]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSGoogle Scholar
  56. [56]
    M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].ADSGoogle Scholar
  57. [57]
    J. Schechter and J. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  58. [58]
    R.N. Mohapatra and G. Senjanovic, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  59. [59]
    R. Foot, H. Lew, X. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].Google Scholar
  60. [60]
    E. Ma and D. Roy, Heavy triplet leptons and new gauge boson, Nucl. Phys. B 644 (2002) 290 [hep-ph/0206150] [INSPIRE].ADSGoogle Scholar
  61. [61]
    S. King, Neutrino mass models, Rept. Prog. Phys. 67 (2004) 107 [hep-ph/0310204] [INSPIRE].ADSGoogle Scholar
  62. [62]
    G. Altarelli and F. Feruglio, Models of neutrino masses and mixings, New J. Phys. 6 (2004) 106 [hep-ph/0405048] [INSPIRE].ADSGoogle Scholar
  63. [63]
    A. Ibarra, E. Molinaro and S. Petcov, Low Energy Signatures of the TeV Scale See-Saw Mechanism, Phys. Rev. D 84 (2011) 013005 [arXiv:1103.6217] [INSPIRE].ADSGoogle Scholar
  64. [64]
    S.M. Bilenky, C. Giunti, W. Grimus, B. Kayser and S. Petcov, Constraints from neutrino oscillation experiments on the effective Majorana mass in neutrinoless double beta decay, Phys. Lett. B 465 (1999) 193 [hep-ph/9907234] [INSPIRE].ADSGoogle Scholar
  65. [65]
    S.M. Bilenky, S. Pascoli and S. Petcov, Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta decay. 1. The Three neutrino mixing case, Phys. Rev. D 64 (2001) 053010 [hep-ph/0102265] [INSPIRE].ADSGoogle Scholar
  66. [66]
    T. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].ADSGoogle Scholar
  67. [67]
    S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSGoogle Scholar
  68. [68]
    F. Wilczek, Problem of Strong p and t Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSGoogle Scholar
  69. [69]
    N.G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].ADSGoogle Scholar
  70. [70]
    H. Haber, G.L. Kane and T. Sterling, The Fermion Mass Scale and Possible Effects of Higgs Bosons on Experimental Observables, Nucl. Phys. B 161 (1979) 493 [INSPIRE].ADSGoogle Scholar
  71. [71]
    J.F. Donoghue and L.F. Li, Properties of Charged Higgs Bosons, Phys. Rev. D 19 (1979) 945 [INSPIRE].ADSGoogle Scholar
  72. [72]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunters Guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  73. [73]
    G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012)1 [arXiv:1106.0034] [INSPIRE].ADSGoogle Scholar
  74. [74]
    F. del Aguila, J. Aguilar-Saavedra, J. de Blas and M. Pérez-Victoria, Electroweak constraints on see-saw messengers and their implications for LHC, in Proceedings of 43rd Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile Italy (2008) [arXiv:0806.1023] [INSPIRE].
  75. [75]
    S. Kanemura and K. Yagyu, Radiative corrections to electroweak parameters in the Higgs triplet model and implication with the recent Higgs boson searches, arXiv:1201.6287 [INSPIRE].
  76. [76]
    F. del Aguila and M.J. Bowick, Suppression of lepton number violation mediated by Δi = 0 mass fermions, Phys. Lett. B 119 (1982) 144 [INSPIRE].ADSGoogle Scholar
  77. [77]
    P. Langacker and D. London, Mixing Between Ordinary and Exotic Fermions, Phys. Rev. D 38 (1988) 886 [INSPIRE].ADSGoogle Scholar
  78. [78]
    E. Nardi, E. Roulet and D. Tommasini, Global analysis of fermion mixing with exotics, Nucl. Phys. B 386 (1992) 239 [INSPIRE].ADSGoogle Scholar
  79. [79]
    M. Blanke, A.J. Buras, B. Duling, A. Poschenrieder and C. Tarantino, Charged leptonflavour violation and (g − 2)μ in the Littlest Higgs Model with T-Parity: a clear distinction from Supersymmetry, JHEP 05 (2007) 013 [hep-ph/0702136] [INSPIRE].ADSGoogle Scholar
  80. [80]
    F. del Aguila, J. Illana and M. Jenkins, Precise limits from lepton flavour violating processes on the Littlest Higgs model with T-parity, JHEP 01 (2009) 080 [arXiv:0811.2891] [INSPIRE].Google Scholar
  81. [81]
    F. del Aguila, J. Illana and M. Jenkins, Muon to electron conversion in the Littlest Higgs model with T-parity, JHEP 09 (2010) 040 [arXiv:1006.5914] [INSPIRE].Google Scholar
  82. [82]
    T. Goto, Y. Okada and Y. Yamamoto, Tau and muon lepton flavor violations in the littlest Higgs model with T-parity, Phys. Rev. D 83 (2011) 053011 [arXiv:1012.4385] [INSPIRE].ADSGoogle Scholar
  83. [83]
    S.J. Huber and Q. Shafi, Neutrino oscillations and rare processes in models with a small extra dimension, Phys. Lett. B 512 (2001) 365 [hep-ph/0104293] [INSPIRE].ADSGoogle Scholar
  84. [84]
    M. Carena, A.D. Medina, N.R. Shah and C.E. Wagner, Gauge-Higgs Unification, Neutrino Masses and Dark Matter in Warped Extra Dimensions, Phys. Rev. D 79 (2009) 096010 [arXiv:0901.0609] [INSPIRE].ADSGoogle Scholar
  85. [85]
    F. del Aguila, A. Carmona and J. Santiago, Neutrino masses from an A4 symmetry in holographic composite Higgs models, JHEP 08 (2010) 127 [arXiv:1001.5151] [INSPIRE].ADSGoogle Scholar
  86. [86]
    M. Raidal et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C 57 (2008) 13 [arXiv:0801.1826] [INSPIRE].ADSGoogle Scholar
  87. [87]
    T. Feldmann, Lepton Flavour Violation Theory, PoS(BEAUTY 2011)017 [arXiv:1105.2139] [INSPIRE].
  88. [88]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in Electroweak Precision Data, Phys. Rev. D 78 (2008) 013010 [arXiv:0803.4008] [INSPIRE].ADSGoogle Scholar
  89. [89]
    F. del Aguila, L. Ametller, G.L. Kane and J. Vidal, Vector like fermion and standard Higgs production at Hadron colliders, Nucl. Phys. B 334 (1990) 1 [INSPIRE].ADSGoogle Scholar
  90. [90]
    J. Aguilar-Saavedra, Heavy lepton pair production at LHC: Model discrimination with multi-lepton signals, Nucl. Phys. B 828 (2010) 289 [arXiv:0905.2221] [INSPIRE].ADSGoogle Scholar
  91. [91]
    F. del Aguila, A. Carmona and J. Santiago, Tau Custodian searches at the LHC, Phys. Lett. B 695 (2011) 449 [arXiv:1007.4206] [INSPIRE].ADSGoogle Scholar
  92. [92]
    MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ +e + γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].ADSGoogle Scholar
  93. [93]
    MEG collaboration, F. Cei, Lepton flavour violation experiments in LHC era, J. Phys. Conf. Ser. 259 (2010) 012010 [INSPIRE].ADSGoogle Scholar
  94. [94]
    W.-Y. Keung and G. Senjanović, Majorana neutrinos and the production of the right-handed charged gauge boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE].ADSGoogle Scholar
  95. [95]
    R. Franceschini, T. Hambye and A. Strumia, Type-III see-saw at LHC, Phys. Rev. D 78 (2008) 033002 [arXiv:0805.1613] [INSPIRE].ADSGoogle Scholar
  96. [96]
    G. Gelmini and M. Roncadelli, Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number, Phys. Lett. B 99 (1981) 411 [INSPIRE].ADSGoogle Scholar
  97. [97]
    E. Ma and U. Sarkar, Neutrino masses and leptogenesis with heavy Higgs triplets, Phys. Rev. Lett. 80 (1998) 5716 [hep-ph/9802445] [INSPIRE].ADSGoogle Scholar
  98. [98]
    J. Gunion, J. Grifols, A. Mendez, B. Kayser and F.I. Olness, Higgs Bosons in Left-Right Symmetric Models, Phys. Rev. D 40 (1989) 1546 [INSPIRE].ADSGoogle Scholar
  99. [99]
    K. Huitu, J. Maalampi, A. Pietila and M. Raidal, Doubly charged Higgs at LHC, Nucl. Phys. B 487 (1997) 27 [hep-ph/9606311] [INSPIRE].ADSGoogle Scholar
  100. [100]
    J. Gunion, C. Loomis and K. Pitts, Searching for doubly charged Higgs bosons at future colliders, eConf C 960625 (1996) LTH096 [hep-ph/9610237] [INSPIRE].Google Scholar
  101. [101]
    A. Akeroyd and M. Aoki, Single and pair production of doubly charged Higgs bosons at hadron colliders, Phys. Rev. D 72 (2005) 035011 [hep-ph/0506176] [INSPIRE].ADSGoogle Scholar
  102. [102]
    G. Azuelos, K. Benslama and J. Ferland, Prospects for the search for a doubly-charged Higgs in the left-right symmetric model with ATLAS, J. Phys. G 32 (2006) 73 [hep-ph/0503096] [INSPIRE].ADSGoogle Scholar
  103. [103]
    F. del Aguila and J. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].ADSGoogle Scholar
  104. [104]
    A. Akeroyd, C.-W. Chiang and N. Gaur, Leptonic signatures of doubly charged Higgs boson production at the LHC, JHEP 11 (2010) 005 [arXiv:1009.2780] [INSPIRE].ADSGoogle Scholar
  105. [105]
    B. Dion, T. Gregoire, D. London, L. Marleau and H. Nadeau, Bilepton production at hadron colliders, Phys. Rev. D 59 (1999) 075006 [hep-ph/9810534] [INSPIRE].ADSGoogle Scholar
  106. [106]
    F. Cuypers and S. Davidson, Bileptons: Present limits and future prospects, Eur. Phys. J. C 2 (1998) 503 [hep-ph/9609487] [INSPIRE].ADSGoogle Scholar
  107. [107]
    F. del Aguila, J. Aguilar-Saavedra and J. de Blas, Trilepton signals: the golden channel for seesaw searches at LHC, Acta Phys. Polon. B 40 (2009) 2901 [arXiv:0910.2720] [INSPIRE].ADSGoogle Scholar
  108. [108]
    F. del Aguila, J.A. Aguilar-Saavedra and J. de Blas, New neutrino interactions at large colliders, PoS(ICHEP 2010)296 [arXiv:1012.1327] [INSPIRE].
  109. [109]
    P. Nath et al., The Hunt for New Physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl. 200-202 (2010) 185 [arXiv:1001.2693] [INSPIRE].Google Scholar
  110. [110]
    CMS collaboration, Inclusive search for doubly charged Higgs in leptonic final states at \( \sqrt {s} = {7} \) TeV, PAS-HIG-11-007 (2011).
  111. [111]
    ATLAS collaboration, Search for Doubly Charged Higgs Boson Production in Like-sign Muon Pairs in pp Collisions at \( \sqrt {s} = {7} \) TeV, ATLAS-CONF-2011-127 (2011).
  112. [112]
    D0 collaboration, V.M. Abazov et al., Search for doubly-charged Higgs boson pair production in \( p\overline p \) collisions at \( \sqrt {s} = {1}{.96} \) TeV, Phys. Rev. Lett. 108 (2012) 021801 [arXiv:1106.4250] [INSPIRE].ADSGoogle Scholar
  113. [113]
    CDF collaboration, A Search for Doubly-Charged Bosons decaying to Like-Sign Dileptons at CDF with 6.1 fb −1, Technical Report CDF/PHYS/EXO/PUBLIC/10509, FERMILAB (2011).
  114. [114]
    C.-W. Chiang, T. Nomura and K. Tsumura, Search for doubly charged Higgs bosons using the same-sign diboson mode at the LHC, arXiv:1202.2014 [INSPIRE].
  115. [115]
    S. Glashow, J. Iliopoulos and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry, Phys. Rev. D 2 (1970) 1285 [INSPIRE].ADSGoogle Scholar
  116. [116]
    A. Dolgov, Baryogenesis, Nucl. Phys. Proc. Suppl. 35 (1994) 28 [hep-ph/9312208] [INSPIRE].ADSGoogle Scholar
  117. [117]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSGoogle Scholar
  118. [118]
    MINOS collaboration, P. Adamson et al., Measurement of the neutrino mass splitting and flavor mixing by MINOS, Phys. Rev. Lett. 106 (2011) 181801 [arXiv:1103.0340] [INSPIRE].ADSGoogle Scholar
  119. [119]
    T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSGoogle Scholar
  120. [120]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].ADSGoogle Scholar
  121. [121]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSGoogle Scholar
  122. [122]
    RENO collaboration, J. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSGoogle Scholar
  123. [123]
    J.C. Collins, Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1984).Google Scholar
  124. [124]
    J. Wudka, Conditions for evading the limits on the scale of new physics, J. Phys. G 31 (2005) 1401 [INSPIRE].ADSGoogle Scholar
  125. [125]
    C. Arzt, M. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].ADSGoogle Scholar
  126. [126]
    H. Georgi, On-shell effective field theory, Nucl. Phys. B 361 (1991) 339 [INSPIRE].ADSGoogle Scholar
  127. [127]
    C. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342 (1995) 189 [hep-ph/9304230] [INSPIRE].ADSGoogle Scholar
  128. [128]
    F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic study of the d = 5 Weinberg operator at one-loop order, arXiv:1204.5862 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Francisco del Aguila
    • 1
  • Alberto Aparici
    • 2
  • Subhaditya Bhattacharya
    • 3
  • Arcadi Santamaria
    • 2
  • Jose Wudka
    • 3
  1. 1.CAFPE and Departamento de Fisica Teorica y del CosmosUniversidad de GranadaGranadaSpain
  2. 2.Departament de Fisica Teorica, Universitat de Valencia and IFIC, Universitat de Valencia-CSICBurjassotSpain
  3. 3.Department of Physics and AstronomyUniversity of CaliforniaRiversideU.S.A.

Personalised recommendations