Exact black holes and universality in the backreaction of non-linear sigma models with a potential in (A)dS4.

Article

Abstract

The aim of this paper is to construct accelerated, stationary and axisymmetric exact solutions of the Einstein theory with self interacting scalar fields in (A)dS4. To warm up, the backreaction of the (non)-minimally coupled scalar field is solved, the scalar field equations are integrated and all the potentials compatible with the metric ansatz and Einstein gravity are found. With these results at hand the non-linear sigma model is tackled. The scalar field Lagrangian is generic; neither the coupling to the curvature, neither the metric in the scalar manifold nor the potential, are fixed ab initio. The unique assumption in the analysis is the metric ansatz: it has the form of the most general Petrov type D vacuum solution of general relativity; it is a a cohomogeneity two Weyl rescaling of the Carter metric and therefore it has the typical Plebanski-Demianski form with two arbitrary functions of one variable and one arbitrary function of two variables. It is shown, by an straightforward manipulation of the field equations, that the metric is completely integrable without necessity of specifiying anything in the scalar Lagrangian. This results is that the backreaction of the scalar fields, within this class of metrics, is universal. The metric functions generically show an explicit dependence on a dynamical exponent that allows to smoothly connect this new family of solutions with the actual Plebanski-Demianski spacetime. The remaining field equations imply that the scalar fields follow geodesics in the scalar manifold with an affine parameter given by a non-linear function of the space-time coordinates and define the on-shell form of the potential plus a functional equation that it has to satisfy. To further find the exact form of the potential the simplest case associated to a flat scalar manifold is taken. The most general potential compatible with the Einstein theory and the metric ansatz is constructed in this case and it is shown that it has less symmetry than the maximal compact subgroup of the coset construction. Finally, the most general family of (A)dS4 static hairy black holes is explicitly constructed and its properties are outlined.

Keywords

Integrable Equations in Physics Black Holes 

References

  1. [1]
    C. Martí, R. Troncoso and J. Zanelli, de Sitter black hole with a conformally coupled scalar field in four-dimensions, Phys. Rev. D 67 (2003) 024008 [hep-th/0205319] [INSPIRE].ADSGoogle Scholar
  2. [2]
    C. Martí, J.P. Staforelli and R. Troncoso, Topological black holes dressed with a conformally coupled scalar field and electric charge, Phys. Rev. D 74 (2006) 044028 [hep-th/0512022] [INSPIRE].ADSGoogle Scholar
  3. [3]
    E. Radu and E. Winstanley, Conformally coupled scalar solitons and black holes with negative cosmological constant, Phys. Rev. D 72 (2005) 024017 [gr-qc/0503095] [INSPIRE].ADSGoogle Scholar
  4. [4]
    A. Anabalon and H. Maeda, New charged black holes with conformal scalar hair, Phys. Rev. D 81 (2010) 041501 [arXiv:0907.0219] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    C. Charmousis, T. Kolyvaris and E. Papantonopoulos, Charged C-metric with conformally coupled scalar field, Class. Quant. Grav. 26 (2009) 175012 [arXiv:0906.5568] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    M. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999) 237 [hep-th/9901149] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    S.G. Saenz and C. Martí, Anti-de Sitter massless scalar field spacetimes in arbitrary dimensions, arXiv:1203.4776 [INSPIRE].
  8. [8]
    A. Anabalon, F. Canfora, A. Giacomini and J. Oliva, Black holes with primary hair in gauged N = 8 supergravity, arXiv:1203.6627 [INSPIRE].
  9. [9]
    T. Hertog, Towards a novel no-hair theorem for black holes, Phys. Rev. D 74 (2006) 084008 [gr-qc/0608075] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Ghez, M. Morris, E. Becklin, T. Kremenek and A. Tanner, The accelerations of stars orbiting the Milky Way’s central black hole, Nature 407 (2000) 349 [astro-ph/0009339] [INSPIRE]. ADSCrossRefGoogle Scholar
  12. [12]
    A. Ghez, S. Salim, S.D. Hornstein, A. Tanner, M. Morris, et al., Stellar orbits around the galactic center black hole, Astrophys. J. 620 (2005) 744 [astro-ph/0306130] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Ghez, S. Salim, N. Weinberg, J. Lu, T. Do, et al., Measuring distance and properties of the Milky Way’s central supermassive black hole with stellar orbits, Astrophys. J. 689 (2008) 1044 [arXiv:0808.2870] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    L. Sadeghian and C.M. Will, Testing the black hole no-hair theorem at the galactic center: perturbing effects of stars in the surrounding cluster, Class. Quant. Grav. 28 (2011) 225029 [arXiv:1106.5056] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C.M. Will, Testing the general relativistic no-hair theorems using the galactic center black hole SgrA*, arXiv:0711.1677 [INSPIRE].
  16. [16]
    P. Pani and V. Cardoso, Are black holes in alternative theories serious astrophysical candidates? the case for Einstein-Dilaton-Gauss-Bonnet black holes, Phys. Rev. D 79 (2009) 084031 [arXiv:0902.1569] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen, Jordan frame supergravity and inflation in NMSSM, Phys. Rev. D 82 (2010) 045003 [arXiv:1004.0712] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Anabalon and A. Cisterna, Asymptotically (anti) de Sitter black holes and wormholes with a self interacting scalar field in four dimensions, Phys. Rev. D 85 (2012) 084035 [arXiv:1201.2008] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].
  21. [21]
    S.-S. Lee, Low-energy effective theory of Fermi surface coupled with U(1) gauge field in 2+1 dimensions, Phys. Rev B 80 (2009) 165102 [arXiv:0905.4532].ADSCrossRefGoogle Scholar
  22. [22]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev. D 83 (2011) 046003 [arXiv:1008.2828] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    E. Conde and A.V. Ramallo, On the gravity dual of Chern-Simons-matter theories with unquenched flavor, JHEP 07 (2011) 099 [arXiv:1105.6045] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    A. Donos, J.P. Gauntlett, N. Kim and O. Varela, Wrapped M5-branes, consistent truncations and AdS/CMT, JHEP 12 (2010) 003 [arXiv:1009.3805] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    R.M. Wald, General relativity, University of Chicago Press, Chicago U.S.A. (1984).CrossRefMATHGoogle Scholar
  31. [31]
    B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations, Commun. Math. Phys. 10 (1968) 280 [INSPIRE].MATHGoogle Scholar
  32. [32]
    J. Plebanski, A class of solutions of Einstein-Maxwell equations, Ann. Phys. 90 (1975) 196 .MathSciNetADSCrossRefMATHGoogle Scholar
  33. [33]
    W. Chen and H. Lü, Kerr-Schild structure and harmonic 2-forms on (A)dS-Kerr-NUT metrics, Phys. Lett. B 658 (2008) 158 [arXiv:0705.4471] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Plebanski and M. Demianski, Rotating, charged and uniformly accelerating mass in general relativity, Annals Phys. 98 (1976) 98 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  35. [35]
    J. Bicak and V. Pravda, Spinning c metric: radiative space-time with accelerating, rotating black holes, Phys. Rev. D 60 (1999) 044004 [gr-qc/9902075] [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    O.J. Dias and J.P. Lemos, Pair of accelerated black holes in Anti-de Sitter background: AdS c metric, Phys. Rev. D 67 (2003) 064001 [hep-th/0210065] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    J. Griffiths, P. Krtous and J. Podolsky, Interpreting the C-metric, Class. Quant. Grav. 23 (2006) 6745 [gr-qc/0609056] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  38. [38]
    W. Kinnersley and M. Walker, Uniformly accelerating charged mass in general relativity, Phys. Rev. D 2 (1970) 1359 [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    J. Bicak, Gravitational radiation from uniformly accelerated particles in general relativity, Proc. R. Soc. Lond. 302 (1968) 201.ADSCrossRefGoogle Scholar
  40. [40]
    H. Lü, J. Mei and C. Pope, New black holes in five dimensions, Nucl. Phys. B 806 (2009) 436 [arXiv:0804.1152] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D. Kubiznak, Hidden symmetries of higher-dimensional rotating black holes, arXiv:0809.2452 [INSPIRE].
  42. [42]
    A. Anabalon and H. Maeda, New charged black holes with conformal scalar hair, Phys. Rev. D 81 (2010) 041501 [arXiv:0907.0219] [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    A. Anabalon and H. Maeda, to appear.Google Scholar
  44. [44]
    P. Breitenlohner, D. Maison and G.W. Gibbons, Four-dimensional black holes from Kaluza-Klein theories, Commun. Math. Phys. 120 (1988) 295 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  45. [45]
    W. Kinnersley, Type D vacuum metrics, J. Math. Phys. 10 (1969) 1195 [INSPIRE].MathSciNetCrossRefADSMATHGoogle Scholar
  46. [46]
    S. Benenti and M. Francaviglia, Remarks on certain separability structures and their applications to general relativity, Gen. Rel. Grav. 10 (1979) 79.ADSCrossRefMATHGoogle Scholar
  47. [47]
    J. Podolsky and J.B. Griffiths, Exact space-times in Einstein’s general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2009).Google Scholar
  48. [48]
    Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    T. Houri, D. Kubiznak, C.M. Warnick and Y. Yasui, Local metrics admitting a principal Killing-Yano tensor with torsion, arXiv:1203.0393 [INSPIRE].
  50. [50]
    M. Durkee, Geodesics and symmetries of doubly-spinning black rings, Class. Quant. Grav. 26 (2009) 085016 [arXiv:0812.0235] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Departamento de Ciencias, Facultad de Artes Liberales yFacultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezViña del MarChile

Personalised recommendations