Advertisement

Constrained supersymmetry after two years of LHC data: a global view with Fittino

  • Philip BechtleEmail author
  • Torsten Bringmann
  • Klaus Desch
  • Herbi Dreiner
  • Matthias Hamer
  • Carsten Hensel
  • Michael Krämer
  • Nelly Nguyen
  • Werner Porod
  • Xavier Prudent
  • Björn Sarrazin
  • Mathias Uhlenbrock
  • Peter Wienemann
Open Access
Article

Abstract

We perform global fits to the parameters of the Constrained Minimal Super-symmetric Standard Model (CMSSM) and to a variant with non-universal Higgs masses (NUHM1). In addition to constraints from low-energy precision observables and the cosmological dark matter density, we take into account the LHC exclusions from searches in jets plus missing transverse energy signatures with about 5 fb−1 of integrated luminosity. We also include the most recent upper bound on the branching ratio B s  → μμ from LHCb. Furthermore, constraints from and implications for direct and indirect dark matter searches are discussed. The best fit of the CMSSM prefers a light Higgs boson just above the experimentally excluded mass. We find that the description of the low-energy observables, (g − 2) μ in particular, and the non-observation of SUSY at the LHC become more and more incompatible within the CMSSM. A potential SM-like Higgs boson with mass around 126 GeV can barely be accommodated. Values for \( \mathcal{B}\left( {{B_{\text{s}}} \to \mu \mu } \right) \) just around the Standard Model prediction are naturally expected in the best fit region. The most-preferred region is not yet affected by limits on direct WIMP searches, but the next generation of experiments will probe this region. Finally, we discuss implications from fine-tuning for the best fit regions.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70 (1974) 39 [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    P. Langacker and M.-X. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].ADSGoogle Scholar
  3. [3]
    U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].ADSGoogle Scholar
  4. [4]
    J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [INSPIRE].ADSGoogle Scholar
  5. [5]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSGoogle Scholar
  6. [6]
    H. Goldberg, Constraint on the photino mass from cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].ADSGoogle Scholar
  7. [7]
    Muon G-2 collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Davier et al., Reevaluation of the hadronic contributions to the muon g-2 and to \( \alpha \left( {M_Z^2} \right) \), CERN-OPEN-2010-021, CERN, Geneva Switzerland (2010) [LAL-10-155] [Eur. Phys. J. C 71 (2011) 1515 ] [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  9. [9]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) pp, Phys. Rev. Lett. 106 (2011) 131802 [arXiv:1102.2357] [INSPIRE].ADSGoogle Scholar
  10. [10]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [INSPIRE].ADSGoogle Scholar
  11. [11]
    ATLAS collaboration, G. Aad et al., Search for stable hadronising squarks and gluinos with the ATLAS experiment at the LHC, Phys. Lett. B 701 (2011) 1 [arXiv:1103.1984] [INSPIRE].ADSGoogle Scholar
  12. [12]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = 7\;TeV \) in final states with missing transverse momentum and b-jets, Phys. Lett. B 701 (2011) 398 [arXiv:1103.4344] [INSPIRE].ADSGoogle Scholar
  13. [13]
    ATLAS collaboration, G. Aad et al., Search for a heavy particle decaying into an electron and a muon with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) pp collisions at the LHC, Phys. Rev. Lett. 106 (2011) 251801 [arXiv:1103.5559] [INSPIRE].ADSGoogle Scholar
  14. [14]
    ATLAS collaboration, G. Aad et al., Search for an excess of events with an identical flavour lepton pair and significant missing transverse momentum in \( \sqrt {s} = 7\;TeV \) proton-proton collisions with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1647 [arXiv:1103.6208] [INSPIRE].ADSGoogle Scholar
  15. [15]
    ATLAS collaboration, G. Aad et al., Search for supersymmetric particles in events with lepton pairs and large missing transverse momentum in \( \sqrt {s} = 7\;TeV \) proton-proton collisions with the ATLAS experiment, Eur. Phys. J. C 71 (2011) 1682 [arXiv:1103.6214] [INSPIRE].ADSGoogle Scholar
  16. [16]
    ATLAS collaboration, G. Aad et al., Search for heavy long-lived charged particles with the ATLAS detector in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Lett. B 703 (2011) 428 [arXiv:1106.4495] [INSPIRE].ADSGoogle Scholar
  17. [17]
    ATLAS collaboration, G. Aad et al., Search for diphoton events with large missing transverse energy with 36 pb −1 of 7 TeV proton-proton collision data with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1744 [arXiv:1107.0561] [INSPIRE].ADSGoogle Scholar
  18. [18]
    ATLAS collaboration, G. Aad et al., Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS, Phys. Lett. B 707 (2012) 478 [arXiv:1109.2242] [INSPIRE].ADSGoogle Scholar
  19. [19]
    ATLAS collaboration, G. Aad et al., Search for a heavy neutral particle decaying into an electron and a muon using 1 fb −1 of ATLAS data, Eur. Phys. J. C 71 (2011) 1809 [arXiv:1109.3089] [INSPIRE].ADSGoogle Scholar
  20. [20]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].ADSGoogle Scholar
  21. [21]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in \( \sqrt {s} = 7\;TeV \) pp collisions using 1 fb −1 of ATLAS data, Phys. Rev. D 85 (2012) 012006 [arXiv:1109.6606] [INSPIRE].ADSGoogle Scholar
  22. [22]
    ATLAS collaboration, G. Aad et al., Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using \( \sqrt {s} = 7\;TeV \) pp collisions with the ATLAS detector, JHEP 11 (2011) 099 [arXiv:1110.2299] [INSPIRE].ADSGoogle Scholar
  23. [23]
    ATLAS collaboration, G. Aad et al., Search for massive colored scalars in four-jet final states in \( \sqrt {s} = 7\;TeV \) proton-proton collisions with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1828 [arXiv:1110.2693] [INSPIRE].ADSGoogle Scholar
  24. [24]
    ATLAS collaboration, G. Aad et al., Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 709 (2012) 137 [arXiv:1110.6189] [INSPIRE].ADSGoogle Scholar
  25. [25]
    ATLAS collaboration, G. Aad et al., Search for diphoton events with large missing transverse momentum in 1 fb −1 of 7 TeV proton-proton collision data with the ATLAS detector, Phys. Lett. B 710 (2012) 519 [arXiv:1111.4116] [INSPIRE].ADSGoogle Scholar
  26. [26]
    ATLAS collaboration, G. Aad et al., Search for scalar bottom pair production with the ATLAS detector in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Rev. Lett. 108 (2012) 181802 [arXiv:1112.3832] [INSPIRE].ADSGoogle Scholar
  27. [27]
    ATLAS collaboration, G. Aad et al., Search for decays of stopped, long-lived particles from 7 TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 72 (2012) 1965 [arXiv:1201.5595] [INSPIRE].ADSGoogle Scholar
  28. [28]
    ATLAS collaboration, G. Aad et al., Search for anomaly-mediated supersymmetry breaking with the ATLAS detector based on a disappearing-track signature in pp collisions at \( \sqrt {s} = 7\;TeV \), Eur. Phys. J. C 72(2012) 1993 [arXiv:1202.4847] [INSPIRE].ADSGoogle Scholar
  29. [29]
    CMS collaboration, V. Khachatryan et al., Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [INSPIRE].ADSGoogle Scholar
  30. [30]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = 7\;TeV \) in events with two photons and missing transverse energy, Phys. Rev. Lett. 106 (2011) 211802 [arXiv:1103.0953] [INSPIRE].ADSGoogle Scholar
  31. [31]
    CMS collaboration, S. Chatrchyan et al., Search for physics beyond the standard model in opposite-sign dilepton events at \( \sqrt {s} = 7\;TeV \), JHEP 06 (2011) 026 [arXiv:1103.1348] [INSPIRE].ADSGoogle Scholar
  32. [32]
    CMS collaboration, S. Chatrchyan et al., Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC, JHEP 06 (2011) 077 [arXiv:1104.3168] [INSPIRE].ADSGoogle Scholar
  33. [33]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in events with a lepton, a photon and large missing transverse energy in pp collisions at \( \sqrt {s} = 7\;TeV \), JHEP 06 (2011) 093 [arXiv:1105.3152] [INSPIRE].ADSGoogle Scholar
  34. [34]
    CMS collaboration, S. Chatrchyan et al., Search for physics beyond the standard model using multilepton signatures in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Lett. B 704 (2011) 411 [arXiv:1106.0933] [INSPIRE].ADSGoogle Scholar
  35. [35]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in events with b jets and missing transverse momentum at the LHC, JHEP 07 (2011) 113 [arXiv:1106.3272] [INSPIRE].ADSGoogle Scholar
  36. [36]
    CMS collaboration, S. Chatrchyan et al., Inclusive search for squarks and gluinos in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Rev. D 85 (2012) 012004 [arXiv:1107.1279] [INSPIRE].ADSGoogle Scholar
  37. [37]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = 7\;TeV \) in events with a single lepton, jets and missing transverse momentum, JHEP 08 (2011) 156 [arXiv:1107.1870] [INSPIRE].ADSGoogle Scholar
  38. [38]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].ADSGoogle Scholar
  39. [39]
    CMS collaboration, S. Chatrchyan et al., Search for new physics with jets and missing transverse momentum in pp collisions ats = 7 TeV, JHEP 08 (2011) 155 [arXiv:1106.4503] [INSPIRE].ADSGoogle Scholar
  40. [40]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].ADSGoogle Scholar
  41. [41]
    CDMS and EDELWEISS collaboration, Z. Ahmed et al., Combined limits on WIMPs from the CDMS and EDELWEISS experiments, Phys. Rev. D 84 (2011) 011102 [arXiv:1105.3377] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J. Collar, Direct searches for light-mass WIMPs: present state, talk at the UCLA Dark Matter 2012 conference, http://hepconf.physics.ucla.edu/dm12/talks/collar.pdf, .
  43. [43]
    M. Cirelli, Indirect searches for dark matter: a status review, arXiv:1202.1454 [INSPIRE].
  44. [44]
    H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].ADSGoogle Scholar
  45. [45]
    H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles: an account of four-dimensional N = 1 supersymmetry in high energy physics, World Scientific, Hackensack U.S.A. (2004).Google Scholar
  47. [47]
    H.K. Dreiner, An introduction to explicit R-parity violation, hep-ph/9707435 [INSPIRE].
  48. [48]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSzbMATHGoogle Scholar
  50. [50]
    C.F. Berger, J.S. Gainer, J.L. Hewett and T.G. Rizzo, Supersymmetry without prejudice, JHEP 02 (2009) 023 [arXiv:0812.0980] [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    J.A. Conley, J.S. Gainer, J.L. Hewett, M.P. Le and T.G. Rizzo, Supersymmetry without prejudice at the LHC, Eur. Phys. J. C 71 (2011) 1697 [arXiv:1009.2539] [INSPIRE].ADSGoogle Scholar
  52. [52]
    P. Bechtle, K. Desch, W. Porod and P. Wienemann, Determination of MSSM parameters from LHC and ILC observables in a global fit, Eur. Phys. J. C 46 (2006) 533 [hep-ph/0511006] [INSPIRE].ADSGoogle Scholar
  53. [53]
    R.R. de Austri, R. Trotta and L. Roszkowski, A Markov chain Monte Carlo analysis of the CMSSM, JHEP 05 (2006) 002 [hep-ph/0602028] [INSPIRE].Google Scholar
  54. [54]
    B.C. Allanach, K. Cranmer, C.G. Lester and A.M. Weber, Natural priors, CMSSM fits and LHC weather forecasts, JHEP 08 (2007) 023 [arXiv:0705.0487] [INSPIRE].ADSGoogle Scholar
  55. [55]
    O. Buchmueller et al., Predictions for supersymmetric particle masses using indirect experimental and cosmological constraints, JHEP 09 (2008) 117 [arXiv:0808.4128] [INSPIRE].ADSGoogle Scholar
  56. [56]
    O. Buchmueller et al., Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1, Eur. Phys. J. C 64 (2009) 391 [arXiv:0907.5568] [INSPIRE].ADSGoogle Scholar
  57. [57]
    O. Buchmueller et al., Frequentist analysis of the parameter space of minimal supergravity, Eur. Phys. J. C 71 (2011) 1583 [arXiv:1011.6118] [INSPIRE].ADSGoogle Scholar
  58. [58]
    P. Bechtle, K. Desch, M. Uhlenbrock and P. Wienemann, Constraining SUSY models with Fittino using measurements before, with and beyond the LHC, Eur. Phys. J. C 66 (2010) 215 [arXiv:0907.2589] [INSPIRE].ADSGoogle Scholar
  59. [59]
    S. AbdusSalam et al., Benchmark models, planes, lines and points for future SUSY searches at the LHC, Eur. Phys. J. C 71 (2011) 1835 [arXiv:1109.3859] [INSPIRE].ADSGoogle Scholar
  60. [60]
    H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Neutralino cold dark matter in a one parameter extension of the minimal supergravity model, Phys. Rev. D 71 (2005) 095008 [hep-ph/0412059] [INSPIRE].ADSGoogle Scholar
  61. [61]
    H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses, JHEP 07 (2005) 065 [hep-ph/0504001] [INSPIRE].ADSGoogle Scholar
  62. [62]
    L. Roszkowski, R. Ruiz de Austri, R. Trotta, Y.-L.S. Tsai and T.A. Varley, Global fits of the non-universal Higgs model, Phys. Rev. D 83 (2011) 015014 [Addendum ibid. D 83 (2011) 039901] [arXiv:0903.1279] [INSPIRE].ADSGoogle Scholar
  63. [63]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, ATLAS-CONF-2012-033, CERN, Geneva Switzerland (2012).Google Scholar
  64. [64]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry with the razor variables at CMS, CMS-PAS-SUS-12-005, CERN, Geneva Switzerland (2012).Google Scholar
  65. [65]
    P. Bechtle, K. Desch and P. Wienemann, Fittino, a program for determining MSSM parameters from collider observables using an iterative method, Comput. Phys. Commun. 174 (2006) 47 [hep-ph/0412012] [INSPIRE].ADSGoogle Scholar
  66. [66]
    ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = 7\;TeV \) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  67. [67]
    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSGoogle Scholar
  68. [68]
    P. Bechtle et al., What if the LHC does not find supersymmetry in the \( \sqrt {s} = 7\;TeV \) run?, Phys. Rev. D 84 (2011) 011701 [arXiv:1102.4693] [INSPIRE].ADSGoogle Scholar
  69. [69]
    P. Bechtle et al., Present and possible future implications for mSUGRA of the non-discovery of SUSY at the LHC, arXiv:1105.5398 [INSPIRE].
  70. [70]
    B. Allanach, Impact of CMS multi-jets and missing energy search on CMSSM fits, Phys. Rev. D 83 (2011) 095019 [arXiv:1102.3149] [INSPIRE].ADSGoogle Scholar
  71. [71]
    O. Buchmueller et al., Implications of initial LHC searches for supersymmetry, Eur. Phys. J. C 71 (2011) 1634 [arXiv:1102.4585] [INSPIRE].ADSGoogle Scholar
  72. [72]
    B. Allanach, T. Khoo, C. Lester and S. Williams, The impact of the ATLAS zero-lepton, jets and missing momentum search on a CMSSM fit, JHEP 06 (2011) 035 [arXiv:1103.0969] [INSPIRE].ADSGoogle Scholar
  73. [73]
    G. Bertone et al., Global fits of the CMSSM including the first LHC and XENON100 data, JCAP 01 (2012) 015 [arXiv:1107.1715] [INSPIRE].ADSGoogle Scholar
  74. [74]
    O. Buchmueller et al., Supersymmetry and dark matter in light of LHC 2010 and Xenon100 data, Eur. Phys. J. C 71 (2011) 1722 [arXiv:1106.2529] [INSPIRE].ADSGoogle Scholar
  75. [75]
    O. Buchmueller et al., Supersymmetry in light of 1 fb −1 of LHC data, Eur. Phys. J. C 72 (2012) 1878 [arXiv:1110.3568] [INSPIRE].ADSGoogle Scholar
  76. [76]
    A. Fowlie, A. Kalinowski, M. Kazana, L. Roszkowski and Y.S. Tsai, Bayesian implications of current LHC and XENON100 search limits for the constrained MSSM, Phys. Rev. D 85 (2012) 075012 [arXiv:1111.6098] [INSPIRE].ADSGoogle Scholar
  77. [77]
    O. Buchmueller et al., Higgs and supersymmetry, arXiv:1112.3564 [INSPIRE].
  78. [78]
    C. Strege et al., Updated global fits of the CMSSM including the latest LHC SUSY and Higgs searches and XENON100 data, JCAP 03 (2012) 030 [arXiv:1112.4192] [INSPIRE].ADSGoogle Scholar
  79. [79]
    L. Roszkowski, E.M. Sessolo and Y.-L.S. Tsai, Bayesian implications of current LHC supersymmetry and dark matter detection searches for the constrained MSSM, arXiv:1202.1503 [INSPIRE].
  80. [80]
    C. Beskidt, W. de Boer, D. Kazakov and F. Ratnikov, Where is SUSY?, JHEP 05 (2012) 094 [arXiv:1202.3366] [INSPIRE].ADSGoogle Scholar
  81. [81]
    The MasterCode project webpage, http://mastercode.web.cern.ch/mastercode/.
  82. [82]
    N. Nguyen, D. Horns and T. Bringmann, AstroFit: an interface program for exploring complementarity in dark matter research, arXiv:1202.1385 [INSPIRE].
  83. [83]
    R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSGoogle Scholar
  84. [84]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].ADSGoogle Scholar
  85. [85]
    W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, arXiv:1104.1573 [INSPIRE].
  86. [86]
    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSzbMATHGoogle Scholar
  87. [87]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSzbMATHGoogle Scholar
  88. [88]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, FeynHiggs 2.7, Nucl. Phys. Proc. Suppl. 205-206 (2010) 152 [arXiv:1007.0956] [INSPIRE].ADSGoogle Scholar
  89. [89]
    F. Mahmoudi, SuperIso program and flavor data constraints, PoS(CHARGED2008)020 [arXiv:0812.2902] [INSPIRE].
  90. [90]
    G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs 2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].ADSzbMATHGoogle Scholar
  91. [91]
    P. Gondolo et al., DarkSUSY: computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].ADSGoogle Scholar
  92. [92]
    P. Gondolo et al., DarkSUSY homepage, http://www.darksusy.org/.
  93. [93]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].ADSzbMATHGoogle Scholar
  94. [94]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].ADSGoogle Scholar
  95. [95]
    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [INSPIRE].
  96. [96]
    LHCb collaboration, R. Aaij et al., Strong constraints on the rare decays B s → μ + μ and B 0 → μ + μ , arXiv:1203.4493 [INSPIRE].
  97. [97]
    CDF collaboration, T. Aaltonen et al., Precise measurement of the W -boson mass with the CDF II detector, Phys. Rev. Lett. 108 (2012) 151803 [arXiv:1203.0275] [INSPIRE].ADSGoogle Scholar
  98. [98]
    D0 collaboration, V.M. Abazov et al., Measurement of the W -boson mass with the D0 detector, Phys. Rev. Lett. 108 (2012) 151804 [arXiv:1203.0293] [INSPIRE].ADSGoogle Scholar
  99. [99]
    Tevatron Electroweak Working Group, CDF and D0 collaborations, 2012 update of the combination of CDF and D0 results for the mass of the W boson, arXiv:1204.0042 [INSPIRE].
  100. [100]
    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].ADSGoogle Scholar
  101. [101]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  102. [102]
    LHCb collaboration, Roadmap for selected key measurements of LHCb, LHCb-PUB-2009-029, CERN, Geneva Switzerland (2009) [arXiv:0912.4179] [INSPIRE].Google Scholar
  103. [103]
    A.J. Buras, Minimal flavour violation and beyond: towards a flavour code for short distance dynamics, Acta Phys. Polon. B 41 (2010) 2487 [arXiv:1012.1447] [INSPIRE].Google Scholar
  104. [104]
    A. Dedes, H.K. Dreiner and U. Nierste, Correlation of B s → μ + μ and (g-2) μ in minimal supergravity, Phys. Rev. Lett. 87 (2001) 251804 [hep-ph/0108037] [INSPIRE].ADSGoogle Scholar
  105. [105]
    P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [INSPIRE].ADSGoogle Scholar
  106. [106]
    B. Allanach et al., SUSY Les Houches accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].ADSGoogle Scholar
  107. [107]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].ADSGoogle Scholar
  108. [108]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSGoogle Scholar
  109. [109]
    J. Edsjö and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].ADSGoogle Scholar
  110. [110]
    B. Herrmann and M. Klasen, SUSY-QCD corrections to dark matter annihilation in the Higgs funnel, Phys. Rev. D 76 (2007) 117704 [arXiv:0709.0043] [INSPIRE].ADSGoogle Scholar
  111. [111]
    B. Herrmann, M. Klasen and K. Kovarik, Neutralino annihilation into massive quarks with SUSY-QCD corrections, Phys. Rev. D 79 (2009) 061701 [arXiv:0901.0481] [INSPIRE].ADSGoogle Scholar
  112. [112]
    F. Boudjema, G. Drieu La Rochelle and S. Kulkarni, One-loop corrections, uncertainties and approximations in neutralino annihilations: examples, Phys. Rev. D 84 (2011) 116001 [arXiv:1108.4291] [INSPIRE].ADSGoogle Scholar
  113. [113]
    D.G. Cerdeno and A.M. Green, Direct detection of WIMPs, arXiv:1002.1912 [INSPIRE].
  114. [114]
    J. Gasser, H. Leutwyler and M. Sainio, Sigma term update, Phys. Lett. B 253 (1991) 252 [INSPIRE].ADSGoogle Scholar
  115. [115]
    DAMA collaboration, R. Bernabei et al., The DAMA/LIBRA apparatus, Nucl. Instrum. Meth. A 592 (2008) 297 [arXiv:0804.2738] [INSPIRE].ADSGoogle Scholar
  116. [116]
    C. Aalseth et al., Search for an annual modulation in a P-type point contact germanium dark matter detector, Phys. Rev. Lett. 107 (2011) 141301 [arXiv:1106.0650] [INSPIRE].ADSGoogle Scholar
  117. [117]
    G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].ADSGoogle Scholar
  118. [118]
    J. Jochum et al., The CRESST dark matter search, Prog. Part. Nucl. Phys. 66 (2011) 202 [INSPIRE].ADSGoogle Scholar
  119. [119]
    DARWIN consortium collaboration, L. Baudis, DARWIN: dark matter WIMP search with noble liquids, arXiv:1201.2402 [INSPIRE].
  120. [120]
    M. Cirelli et al., PPPC 4 DM ID: a Poor Particle Physicist cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [arXiv:1012.4515] [INSPIRE].ADSGoogle Scholar
  121. [121]
    Fermi-LAT collaboration, M. Ackermann et al., Constraining dark matter models from a combined analysis of milky way satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107 (2011) 241302 [arXiv:1108.3546] [INSPIRE].
  122. [122]
    HESS collaboration, A. Abramowski et al., H.E.S.S. constraints on dark matter annihilations towards the sculptor and carina dwarf galaxies, Astropart. Phys. 34 (2011) 608 [arXiv:1012.5602] [INSPIRE].ADSGoogle Scholar
  123. [123]
    ALEPH, DELPHI, L3 and OPAL collaborations, Combined LEP chargino results, up to 208 GeV for large m0, http://lepsusy.web.cern.ch/lepsusy/www/inos moriond01/charginos pub.html,
  124. [124]
    H.K. Dreiner et al., Mass bounds on a very light neutralino, Eur. Phys. J. C 62 (2009) 547 [arXiv:0901.3485] [INSPIRE].ADSGoogle Scholar
  125. [125]
    J. Conley, H. Dreiner and P. Wienemann, Measuring a light neutralino mass at the ILC: testing the MSSM neutralino cold dark matter model, Phys. Rev. D 83 (2011) 055018 [arXiv:1012.1035] [INSPIRE].ADSGoogle Scholar
  126. [126]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].ADSGoogle Scholar
  127. [127]
    B. Allanach, A. Djouadi, J. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].ADSGoogle Scholar
  128. [128]
    S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the MSSM Higgs sector at O(αbαs), Eur. Phys. J. C 39 (2005) 465 [hep-ph/0411114] [INSPIRE].ADSGoogle Scholar
  129. [129]
    K. Williams, private communication.Google Scholar
  130. [130]
    J.R. Ellis, S. Heinemeyer, K. Olive, A. Weber and G. Weiglein, The supersymmetric parameter space in light of B physics observables and electroweak precision data, JHEP 08 (2007) 083 [arXiv:0706.0652] [INSPIRE].ADSGoogle Scholar
  131. [131]
    ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7,{ }TeV \) proton-proton collisions, ATLAS-CONF-2011-086, CERN, Geneva Switzerland (2011).Google Scholar
  132. [132]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSGoogle Scholar
  133. [133]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  134. [134]
    B. Gosdzik and B. Sarrazin, private communication.Google Scholar
  135. [135]
    W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSGoogle Scholar
  136. [136]
    W. Beenakker, M. Krämer, T. Plehn, M. Spira and P. Zerwas, Stop production at hadron colliders, Nucl. Phys. B 515 (1998) 3 [hep-ph/9710451] [INSPIRE].ADSGoogle Scholar
  137. [137]
    A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett. 102 (2009) 111802 [arXiv:0807.2405] [INSPIRE].ADSGoogle Scholar
  138. [138]
    A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004 [arXiv:0905.4749] [INSPIRE].ADSGoogle Scholar
  139. [139]
    W. Beenakker et al., Soft-gluon resummation for squark and gluino hadroproduction, JHEP 12 (2009) 041 [arXiv:0909.4418] [INSPIRE].ADSGoogle Scholar
  140. [140]
    W. Beenakker et al., Supersymmetric top and bottom squark production at hadron colliders, JHEP 08 (2010) 098 [arXiv:1006.4771] [INSPIRE].ADSGoogle Scholar
  141. [141]
    W. Beenakker et al., Squark and gluino hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637 [arXiv:1105.1110] [INSPIRE].ADSGoogle Scholar
  142. [142]
    W. Beenakker et al., The production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [INSPIRE].ADSGoogle Scholar
  143. [143]
    CDF collaboration, T. Aaltonen et al., Search for B sμ + μ and B dμ + μ decays with CDF II, Phys. Rev. Lett. 107 (2011) 191801 [Addendum ibid. 107 (2011) 239903] [arXiv:1107.2304] [INSPIRE].ADSGoogle Scholar
  144. [144]
    J. Serrano, Search for the rare decays B s,d → μμ at LHCb, arXiv:1111.2620 [INSPIRE].
  145. [145]
    M.S. Carena, D. Garcia, U. Nierste and C.E. Wagner, Effective Lagrangian for the tbH + interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].ADSGoogle Scholar
  146. [146]
    A. Dedes and A. Pilaftsis, Resummed effective Lagrangian for Higgs mediated FCNC interactions in the CP-violating MSSM, Phys. Rev. D 67 (2003) 015012 [hep-ph/0209306] [INSPIRE].ADSGoogle Scholar
  147. [147]
    R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].ADSGoogle Scholar
  148. [148]
    ILC collaboration, G. Aarons et al., International Linear Collider reference design report volume 2: physics at the ILC, arXiv:0709.1893 [INSPIRE].
  149. [149]
    E.A. Baltz and P. Gondolo, Markov chain Monte Carlo exploration of minimal supergravity with implications for dark matter, JHEP 10 (2004) 052 [hep-ph/0407039] [INSPIRE].ADSGoogle Scholar
  150. [150]
    A. Abdo et al., Observations of milky way dwarf spheroidal galaxies with the Fermi-LAT detector and constraints on dark matter models, Astrophys. J. 712 (2010) 147 [arXiv:1001.4531] [INSPIRE].ADSGoogle Scholar
  151. [151]
    Fermi-LAT collaboration, M. Ackermann et al., Constraining dark matter models from a combined analysis of milky way satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107 (2011) 241302 [arXiv:1108.3546] [INSPIRE].ADSGoogle Scholar
  152. [152]
    L. Bergström, T. Bringmann and J. Edsjö, Complementarity of direct dark matter detection and indirect detection through gamma-rays, Phys. Rev. D 83 (2011) 045024 [arXiv:1011.4514] [INSPIRE].ADSGoogle Scholar
  153. [153]
    T. Bringmann, L. Bergström and J. Edsjö, New gamma-ray contributions to supersymmetric dark matter annihilation, JHEP 01 (2008) 049 [arXiv:0710.3169] [INSPIRE].ADSGoogle Scholar
  154. [154]
    P. Scott et al., Direct constraints on minimal supersymmetry from Fermi-LAT observations of the dwarf galaxy segue 1, JCAP 01 (2010) 031 [arXiv:0909.3300] [INSPIRE].ADSGoogle Scholar
  155. [155]
    T. Bringmann, X. Huang, A. Ibarra, S. Vogl and C. Weniger, Fermi-LAT search for internal bremsstrahlung signatures from dark matter annihilation, arXiv:1203.1312 [INSPIRE].
  156. [156]
    H. Baer, T. Krupovnickas, S. Profumo and P. Ullio, Model independent approach to focus point supersymmetry: from dark matter to collider searches, JHEP 10 (2005) 020 [hep-ph/0507282] [INSPIRE].ADSGoogle Scholar
  157. [157]
    E. Gildener, Gauge symmetry hierarchies, Phys. Rev. D 14 (1976) 1667 [INSPIRE].ADSGoogle Scholar
  158. [158]
    M. Veltman, The infrared-ultraviolet connection, Acta Phys. Polon. B 12 (1981) 437 [INSPIRE].Google Scholar
  159. [159]
    P.H. Chankowski, J.R. Ellis and S. Pokorski, The fine tuning price of LEP, Phys. Lett. B 423 (1998) 327 [hep-ph/9712234] [INSPIRE].ADSGoogle Scholar
  160. [160]
    R. Barbieri and A. Strumia, About the fine tuning price of LEP, Phys. Lett. B 433 (1998) 63 [hep-ph/9801353] [INSPIRE].ADSGoogle Scholar
  161. [161]
    P.H. Chankowski, J.R. Ellis, M. Olechowski and S. Pokorski, Haggling over the fine tuning price of LEP, Nucl. Phys. B 544 (1999) 39 [hep-ph/9808275] [INSPIRE].ADSGoogle Scholar
  162. [162]
    P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].ADSGoogle Scholar
  163. [163]
    G. Giudice and R. Rattazzi, Living dangerously with low-energy supersymmetry, Nucl. Phys. B 757 (2006) 19 [hep-ph/0606105] [INSPIRE].ADSGoogle Scholar
  164. [164]
    S. Cassel, D. Ghilencea and G. Ross, Fine tuning as an indication of physics beyond the MSSM, Nucl. Phys. B 825 (2010) 203 [arXiv:0903.1115] [INSPIRE].ADSGoogle Scholar
  165. [165]
    S. Cassel, D. Ghilencea, S. Kraml, A. Lessa and G. Ross, Fine-tuning implications for complementary dark matter and LHC SUSY searches, JHEP 05 (2011) 120 [arXiv:1101.4664] [INSPIRE].ADSGoogle Scholar
  166. [166]
    A. Strumia, Implications of first LHC results, arXiv:1107.1259 [INSPIRE].
  167. [167]
    G.G. Ross and K. Schmidt-Hoberg, The fine-tuning of the generalised NMSSM, Nucl. Phys. B 862 (2012) 710 [arXiv:1108.1284] [INSPIRE].ADSGoogle Scholar
  168. [168]
    J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project, Eur. Phys. J. C 46 (2006) 43 [hep-ph/0511344] [INSPIRE].ADSGoogle Scholar
  169. [169]
    H. Baer, J. Ferrandis, S. Kraml and W. Porod, On the treatment of threshold effects in SUSY spectrum computations, Phys. Rev. D 73 (2006) 015010 [hep-ph/0511123] [INSPIRE].ADSGoogle Scholar
  170. [170]
    A.D. Box and X. Tata, Threshold and flavor effects in the renormalization group equations of the MSSM: dimensionless couplings, Phys. Rev. D 77 (2008) 055007 [Erratum ibid. D 82 (2010)119904] [arXiv:0712.2858] [INSPIRE].ADSGoogle Scholar
  171. [171]
    A.D. Box and X. Tata, Threshold and flavour effects in the renormalization group equations of the MSSM II: dimensionful couplings, Phys. Rev. D 79 (2009) 035004 [Erratum ibid. D 82 (2010)119905] [arXiv:0810.5765] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • Philip Bechtle
    • 1
    Email author
  • Torsten Bringmann
    • 2
  • Klaus Desch
    • 1
  • Herbi Dreiner
    • 1
    • 3
  • Matthias Hamer
    • 4
  • Carsten Hensel
    • 4
  • Michael Krämer
    • 5
  • Nelly Nguyen
    • 6
  • Werner Porod
    • 7
  • Xavier Prudent
    • 8
  • Björn Sarrazin
    • 9
  • Mathias Uhlenbrock
    • 1
  • Peter Wienemann
    • 1
  1. 1.Physikalisches InstitutUniversity of BonnBonnGermany
  2. 2.II. Institute for Theoretical PhysicsUniversity of HamburgHamburgGermany
  3. 3.Bethe Center for Theoretical PhysicsUniversity of BonnBonnGermany
  4. 4.II. Physikalisches InstitutUniversity of GöttingenGöttingenGermany
  5. 5.Institute for Theoretical Particle Physics and CosmologyRWTH Aachen UniversityAachenGermany
  6. 6.Institute for Experimental PhysicsUniversity of HamburgHamburgGermany
  7. 7.Institut für Theoretische Physik und AstrophysikUniversity of WürzburgWürzburgGermany
  8. 8.Institut für Kern- und TeilchenphysikTU DresdenDresdenGermany
  9. 9.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations