Constrained supersymmetry after two years of LHC data: a global view with Fittino

Abstract

We perform global fits to the parameters of the Constrained Minimal Super-symmetric Standard Model (CMSSM) and to a variant with non-universal Higgs masses (NUHM1). In addition to constraints from low-energy precision observables and the cosmological dark matter density, we take into account the LHC exclusions from searches in jets plus missing transverse energy signatures with about 5 fb−1 of integrated luminosity. We also include the most recent upper bound on the branching ratio B s  → μμ from LHCb. Furthermore, constraints from and implications for direct and indirect dark matter searches are discussed. The best fit of the CMSSM prefers a light Higgs boson just above the experimentally excluded mass. We find that the description of the low-energy observables, (g − 2) μ in particular, and the non-observation of SUSY at the LHC become more and more incompatible within the CMSSM. A potential SM-like Higgs boson with mass around 126 GeV can barely be accommodated. Values for \( \mathcal{B}\left( {{B_{\text{s}}} \to \mu \mu } \right) \) just around the Standard Model prediction are naturally expected in the best fit region. The most-preferred region is not yet affected by limits on direct WIMP searches, but the next generation of experiments will probe this region. Finally, we discuss implications from fine-tuning for the best fit regions.

References

  1. [1]

    J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70 (1974) 39 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. [2]

    P. Langacker and M.-X. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    H. Goldberg, Constraint on the photino mass from cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    Muon G-2 collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    M. Davier et al., Reevaluation of the hadronic contributions to the muon g-2 and to \( \alpha \left( {M_Z^2} \right) \), CERN-OPEN-2010-021, CERN, Geneva Switzerland (2010) [LAL-10-155] [Eur. Phys. J. C 71 (2011) 1515 ] [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].

  9. [9]

    ATLAS collaboration, G. Aad et al., Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) pp, Phys. Rev. Lett. 106 (2011) 131802 [arXiv:1102.2357] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    ATLAS collaboration, G. Aad et al., Search for stable hadronising squarks and gluinos with the ATLAS experiment at the LHC, Phys. Lett. B 701 (2011) 1 [arXiv:1103.1984] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    ATLAS collaboration, G. Aad et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = 7\;TeV \) in final states with missing transverse momentum and b-jets, Phys. Lett. B 701 (2011) 398 [arXiv:1103.4344] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    ATLAS collaboration, G. Aad et al., Search for a heavy particle decaying into an electron and a muon with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) pp collisions at the LHC, Phys. Rev. Lett. 106 (2011) 251801 [arXiv:1103.5559] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    ATLAS collaboration, G. Aad et al., Search for an excess of events with an identical flavour lepton pair and significant missing transverse momentum in \( \sqrt {s} = 7\;TeV \) proton-proton collisions with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1647 [arXiv:1103.6208] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    ATLAS collaboration, G. Aad et al., Search for supersymmetric particles in events with lepton pairs and large missing transverse momentum in \( \sqrt {s} = 7\;TeV \) proton-proton collisions with the ATLAS experiment, Eur. Phys. J. C 71 (2011) 1682 [arXiv:1103.6214] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    ATLAS collaboration, G. Aad et al., Search for heavy long-lived charged particles with the ATLAS detector in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Lett. B 703 (2011) 428 [arXiv:1106.4495] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    ATLAS collaboration, G. Aad et al., Search for diphoton events with large missing transverse energy with 36 pb −1 of 7 TeV proton-proton collision data with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1744 [arXiv:1107.0561] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    ATLAS collaboration, G. Aad et al., Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS, Phys. Lett. B 707 (2012) 478 [arXiv:1109.2242] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    ATLAS collaboration, G. Aad et al., Search for a heavy neutral particle decaying into an electron and a muon using 1 fb −1 of ATLAS data, Eur. Phys. J. C 71 (2011) 1809 [arXiv:1109.3089] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    ATLAS collaboration, G. Aad et al., Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in \( \sqrt {s} = 7\;TeV \) pp collisions using 1 fb −1 of ATLAS data, Phys. Rev. D 85 (2012) 012006 [arXiv:1109.6606] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    ATLAS collaboration, G. Aad et al., Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using \( \sqrt {s} = 7\;TeV \) pp collisions with the ATLAS detector, JHEP 11 (2011) 099 [arXiv:1110.2299] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    ATLAS collaboration, G. Aad et al., Search for massive colored scalars in four-jet final states in \( \sqrt {s} = 7\;TeV \) proton-proton collisions with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1828 [arXiv:1110.2693] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    ATLAS collaboration, G. Aad et al., Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 709 (2012) 137 [arXiv:1110.6189] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    ATLAS collaboration, G. Aad et al., Search for diphoton events with large missing transverse momentum in 1 fb −1 of 7 TeV proton-proton collision data with the ATLAS detector, Phys. Lett. B 710 (2012) 519 [arXiv:1111.4116] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    ATLAS collaboration, G. Aad et al., Search for scalar bottom pair production with the ATLAS detector in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Rev. Lett. 108 (2012) 181802 [arXiv:1112.3832] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    ATLAS collaboration, G. Aad et al., Search for decays of stopped, long-lived particles from 7 TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 72 (2012) 1965 [arXiv:1201.5595] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    ATLAS collaboration, G. Aad et al., Search for anomaly-mediated supersymmetry breaking with the ATLAS detector based on a disappearing-track signature in pp collisions at \( \sqrt {s} = 7\;TeV \), Eur. Phys. J. C 72(2012) 1993 [arXiv:1202.4847] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    CMS collaboration, V. Khachatryan et al., Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = 7\;TeV \) in events with two photons and missing transverse energy, Phys. Rev. Lett. 106 (2011) 211802 [arXiv:1103.0953] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    CMS collaboration, S. Chatrchyan et al., Search for physics beyond the standard model in opposite-sign dilepton events at \( \sqrt {s} = 7\;TeV \), JHEP 06 (2011) 026 [arXiv:1103.1348] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    CMS collaboration, S. Chatrchyan et al., Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC, JHEP 06 (2011) 077 [arXiv:1104.3168] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in events with a lepton, a photon and large missing transverse energy in pp collisions at \( \sqrt {s} = 7\;TeV \), JHEP 06 (2011) 093 [arXiv:1105.3152] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    CMS collaboration, S. Chatrchyan et al., Search for physics beyond the standard model using multilepton signatures in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Lett. B 704 (2011) 411 [arXiv:1106.0933] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in events with b jets and missing transverse momentum at the LHC, JHEP 07 (2011) 113 [arXiv:1106.3272] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    CMS collaboration, S. Chatrchyan et al., Inclusive search for squarks and gluinos in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Rev. D 85 (2012) 012004 [arXiv:1107.1279] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = 7\;TeV \) in events with a single lepton, jets and missing transverse momentum, JHEP 08 (2011) 156 [arXiv:1107.1870] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    CMS collaboration, S. Chatrchyan et al., Search for new physics with jets and missing transverse momentum in pp collisions ats = 7 TeV, JHEP 08 (2011) 155 [arXiv:1106.4503] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    CDMS and EDELWEISS collaboration, Z. Ahmed et al., Combined limits on WIMPs from the CDMS and EDELWEISS experiments, Phys. Rev. D 84 (2011) 011102 [arXiv:1105.3377] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    J. Collar, Direct searches for light-mass WIMPs: present state, talk at the UCLA Dark Matter 2012 conference, http://hepconf.physics.ucla.edu/dm12/talks/collar.pdf, .

  43. [43]

    M. Cirelli, Indirect searches for dark matter: a status review, arXiv:1202.1454 [INSPIRE].

  44. [44]

    H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles: an account of four-dimensional N = 1 supersymmetry in high energy physics, World Scientific, Hackensack U.S.A. (2004).

    Google Scholar 

  47. [47]

    H.K. Dreiner, An introduction to explicit R-parity violation, hep-ph/9707435 [INSPIRE].

  48. [48]

    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].

    ADS  MATH  Google Scholar 

  50. [50]

    C.F. Berger, J.S. Gainer, J.L. Hewett and T.G. Rizzo, Supersymmetry without prejudice, JHEP 02 (2009) 023 [arXiv:0812.0980] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. [51]

    J.A. Conley, J.S. Gainer, J.L. Hewett, M.P. Le and T.G. Rizzo, Supersymmetry without prejudice at the LHC, Eur. Phys. J. C 71 (2011) 1697 [arXiv:1009.2539] [INSPIRE].

    ADS  Google Scholar 

  52. [52]

    P. Bechtle, K. Desch, W. Porod and P. Wienemann, Determination of MSSM parameters from LHC and ILC observables in a global fit, Eur. Phys. J. C 46 (2006) 533 [hep-ph/0511006] [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    R.R. de Austri, R. Trotta and L. Roszkowski, A Markov chain Monte Carlo analysis of the CMSSM, JHEP 05 (2006) 002 [hep-ph/0602028] [INSPIRE].

    Google Scholar 

  54. [54]

    B.C. Allanach, K. Cranmer, C.G. Lester and A.M. Weber, Natural priors, CMSSM fits and LHC weather forecasts, JHEP 08 (2007) 023 [arXiv:0705.0487] [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    O. Buchmueller et al., Predictions for supersymmetric particle masses using indirect experimental and cosmological constraints, JHEP 09 (2008) 117 [arXiv:0808.4128] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    O. Buchmueller et al., Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1, Eur. Phys. J. C 64 (2009) 391 [arXiv:0907.5568] [INSPIRE].

    ADS  Google Scholar 

  57. [57]

    O. Buchmueller et al., Frequentist analysis of the parameter space of minimal supergravity, Eur. Phys. J. C 71 (2011) 1583 [arXiv:1011.6118] [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    P. Bechtle, K. Desch, M. Uhlenbrock and P. Wienemann, Constraining SUSY models with Fittino using measurements before, with and beyond the LHC, Eur. Phys. J. C 66 (2010) 215 [arXiv:0907.2589] [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    S. AbdusSalam et al., Benchmark models, planes, lines and points for future SUSY searches at the LHC, Eur. Phys. J. C 71 (2011) 1835 [arXiv:1109.3859] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Neutralino cold dark matter in a one parameter extension of the minimal supergravity model, Phys. Rev. D 71 (2005) 095008 [hep-ph/0412059] [INSPIRE].

    ADS  Google Scholar 

  61. [61]

    H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses, JHEP 07 (2005) 065 [hep-ph/0504001] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    L. Roszkowski, R. Ruiz de Austri, R. Trotta, Y.-L.S. Tsai and T.A. Varley, Global fits of the non-universal Higgs model, Phys. Rev. D 83 (2011) 015014 [Addendum ibid. D 83 (2011) 039901] [arXiv:0903.1279] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, ATLAS-CONF-2012-033, CERN, Geneva Switzerland (2012).

    Google Scholar 

  64. [64]

    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry with the razor variables at CMS, CMS-PAS-SUS-12-005, CERN, Geneva Switzerland (2012).

    Google Scholar 

  65. [65]

    P. Bechtle, K. Desch and P. Wienemann, Fittino, a program for determining MSSM parameters from collider observables using an iterative method, Comput. Phys. Commun. 174 (2006) 47 [hep-ph/0412012] [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = 7\;TeV \) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  67. [67]

    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  68. [68]

    P. Bechtle et al., What if the LHC does not find supersymmetry in the \( \sqrt {s} = 7\;TeV \) run?, Phys. Rev. D 84 (2011) 011701 [arXiv:1102.4693] [INSPIRE].

    ADS  Google Scholar 

  69. [69]

    P. Bechtle et al., Present and possible future implications for mSUGRA of the non-discovery of SUSY at the LHC, arXiv:1105.5398 [INSPIRE].

  70. [70]

    B. Allanach, Impact of CMS multi-jets and missing energy search on CMSSM fits, Phys. Rev. D 83 (2011) 095019 [arXiv:1102.3149] [INSPIRE].

    ADS  Google Scholar 

  71. [71]

    O. Buchmueller et al., Implications of initial LHC searches for supersymmetry, Eur. Phys. J. C 71 (2011) 1634 [arXiv:1102.4585] [INSPIRE].

    ADS  Google Scholar 

  72. [72]

    B. Allanach, T. Khoo, C. Lester and S. Williams, The impact of the ATLAS zero-lepton, jets and missing momentum search on a CMSSM fit, JHEP 06 (2011) 035 [arXiv:1103.0969] [INSPIRE].

    ADS  Google Scholar 

  73. [73]

    G. Bertone et al., Global fits of the CMSSM including the first LHC and XENON100 data, JCAP 01 (2012) 015 [arXiv:1107.1715] [INSPIRE].

    ADS  Google Scholar 

  74. [74]

    O. Buchmueller et al., Supersymmetry and dark matter in light of LHC 2010 and Xenon100 data, Eur. Phys. J. C 71 (2011) 1722 [arXiv:1106.2529] [INSPIRE].

    ADS  Google Scholar 

  75. [75]

    O. Buchmueller et al., Supersymmetry in light of 1 fb −1 of LHC data, Eur. Phys. J. C 72 (2012) 1878 [arXiv:1110.3568] [INSPIRE].

    ADS  Google Scholar 

  76. [76]

    A. Fowlie, A. Kalinowski, M. Kazana, L. Roszkowski and Y.S. Tsai, Bayesian implications of current LHC and XENON100 search limits for the constrained MSSM, Phys. Rev. D 85 (2012) 075012 [arXiv:1111.6098] [INSPIRE].

    ADS  Google Scholar 

  77. [77]

    O. Buchmueller et al., Higgs and supersymmetry, arXiv:1112.3564 [INSPIRE].

  78. [78]

    C. Strege et al., Updated global fits of the CMSSM including the latest LHC SUSY and Higgs searches and XENON100 data, JCAP 03 (2012) 030 [arXiv:1112.4192] [INSPIRE].

    ADS  Google Scholar 

  79. [79]

    L. Roszkowski, E.M. Sessolo and Y.-L.S. Tsai, Bayesian implications of current LHC supersymmetry and dark matter detection searches for the constrained MSSM, arXiv:1202.1503 [INSPIRE].

  80. [80]

    C. Beskidt, W. de Boer, D. Kazakov and F. Ratnikov, Where is SUSY?, JHEP 05 (2012) 094 [arXiv:1202.3366] [INSPIRE].

    ADS  Google Scholar 

  81. [81]

    The MasterCode project webpage, http://mastercode.web.cern.ch/mastercode/.

  82. [82]

    N. Nguyen, D. Horns and T. Bringmann, AstroFit: an interface program for exploring complementarity in dark matter research, arXiv:1202.1385 [INSPIRE].

  83. [83]

    R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].

    ADS  Google Scholar 

  84. [84]

    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].

    ADS  Google Scholar 

  85. [85]

    W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, arXiv:1104.1573 [INSPIRE].

  86. [86]

    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    ADS  MATH  Google Scholar 

  87. [87]

    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].

    ADS  MATH  Google Scholar 

  88. [88]

    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, FeynHiggs 2.7, Nucl. Phys. Proc. Suppl. 205-206 (2010) 152 [arXiv:1007.0956] [INSPIRE].

    ADS  Google Scholar 

  89. [89]

    F. Mahmoudi, SuperIso program and flavor data constraints, PoS(CHARGED2008)020 [arXiv:0812.2902] [INSPIRE].

  90. [90]

    G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs 2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].

    ADS  MATH  Google Scholar 

  91. [91]

    P. Gondolo et al., DarkSUSY: computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].

    ADS  Google Scholar 

  92. [92]

    P. Gondolo et al., DarkSUSY homepage, http://www.darksusy.org/.

  93. [93]

    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    ADS  MATH  Google Scholar 

  94. [94]

    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].

    ADS  Google Scholar 

  95. [95]

    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [INSPIRE].

  96. [96]

    LHCb collaboration, R. Aaij et al., Strong constraints on the rare decays B s  → μ + μ and B 0 → μ + μ , arXiv:1203.4493 [INSPIRE].

  97. [97]

    CDF collaboration, T. Aaltonen et al., Precise measurement of the W -boson mass with the CDF II detector, Phys. Rev. Lett. 108 (2012) 151803 [arXiv:1203.0275] [INSPIRE].

    ADS  Google Scholar 

  98. [98]

    D0 collaboration, V.M. Abazov et al., Measurement of the W -boson mass with the D0 detector, Phys. Rev. Lett. 108 (2012) 151804 [arXiv:1203.0293] [INSPIRE].

    ADS  Google Scholar 

  99. [99]

    Tevatron Electroweak Working Group, CDF and D0 collaborations, 2012 update of the combination of CDF and D0 results for the mass of the W boson, arXiv:1204.0042 [INSPIRE].

  100. [100]

    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

    ADS  Google Scholar 

  101. [101]

    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  102. [102]

    LHCb collaboration, Roadmap for selected key measurements of LHCb, LHCb-PUB-2009-029, CERN, Geneva Switzerland (2009) [arXiv:0912.4179] [INSPIRE].

    Google Scholar 

  103. [103]

    A.J. Buras, Minimal flavour violation and beyond: towards a flavour code for short distance dynamics, Acta Phys. Polon. B 41 (2010) 2487 [arXiv:1012.1447] [INSPIRE].

    Google Scholar 

  104. [104]

    A. Dedes, H.K. Dreiner and U. Nierste, Correlation of B s  → μ + μ and (g-2) μ in minimal supergravity, Phys. Rev. Lett. 87 (2001) 251804 [hep-ph/0108037] [INSPIRE].

    ADS  Google Scholar 

  105. [105]

    P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [INSPIRE].

    ADS  Google Scholar 

  106. [106]

    B. Allanach et al., SUSY Les Houches accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].

    ADS  Google Scholar 

  107. [107]

    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

    ADS  Google Scholar 

  108. [108]

    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].

    ADS  Google Scholar 

  109. [109]

    J. Edsjö and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].

    ADS  Google Scholar 

  110. [110]

    B. Herrmann and M. Klasen, SUSY-QCD corrections to dark matter annihilation in the Higgs funnel, Phys. Rev. D 76 (2007) 117704 [arXiv:0709.0043] [INSPIRE].

    ADS  Google Scholar 

  111. [111]

    B. Herrmann, M. Klasen and K. Kovarik, Neutralino annihilation into massive quarks with SUSY-QCD corrections, Phys. Rev. D 79 (2009) 061701 [arXiv:0901.0481] [INSPIRE].

    ADS  Google Scholar 

  112. [112]

    F. Boudjema, G. Drieu La Rochelle and S. Kulkarni, One-loop corrections, uncertainties and approximations in neutralino annihilations: examples, Phys. Rev. D 84 (2011) 116001 [arXiv:1108.4291] [INSPIRE].

    ADS  Google Scholar 

  113. [113]

    D.G. Cerdeno and A.M. Green, Direct detection of WIMPs, arXiv:1002.1912 [INSPIRE].

  114. [114]

    J. Gasser, H. Leutwyler and M. Sainio, Sigma term update, Phys. Lett. B 253 (1991) 252 [INSPIRE].

    ADS  Google Scholar 

  115. [115]

    DAMA collaboration, R. Bernabei et al., The DAMA/LIBRA apparatus, Nucl. Instrum. Meth. A 592 (2008) 297 [arXiv:0804.2738] [INSPIRE].

    ADS  Google Scholar 

  116. [116]

    C. Aalseth et al., Search for an annual modulation in a P-type point contact germanium dark matter detector, Phys. Rev. Lett. 107 (2011) 141301 [arXiv:1106.0650] [INSPIRE].

    ADS  Google Scholar 

  117. [117]

    G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].

    ADS  Google Scholar 

  118. [118]

    J. Jochum et al., The CRESST dark matter search, Prog. Part. Nucl. Phys. 66 (2011) 202 [INSPIRE].

    ADS  Google Scholar 

  119. [119]

    DARWIN consortium collaboration, L. Baudis, DARWIN: dark matter WIMP search with noble liquids, arXiv:1201.2402 [INSPIRE].

  120. [120]

    M. Cirelli et al., PPPC 4 DM ID: a Poor Particle Physicist cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [arXiv:1012.4515] [INSPIRE].

    ADS  Google Scholar 

  121. [121]

    Fermi-LAT collaboration, M. Ackermann et al., Constraining dark matter models from a combined analysis of milky way satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107 (2011) 241302 [arXiv:1108.3546] [INSPIRE].

  122. [122]

    HESS collaboration, A. Abramowski et al., H.E.S.S. constraints on dark matter annihilations towards the sculptor and carina dwarf galaxies, Astropart. Phys. 34 (2011) 608 [arXiv:1012.5602] [INSPIRE].

    ADS  Google Scholar 

  123. [123]

    ALEPH, DELPHI, L3 and OPAL collaborations, Combined LEP chargino results, up to 208 GeV for large m0, http://lepsusy.web.cern.ch/lepsusy/www/inos moriond01/charginos pub.html,

  124. [124]

    H.K. Dreiner et al., Mass bounds on a very light neutralino, Eur. Phys. J. C 62 (2009) 547 [arXiv:0901.3485] [INSPIRE].

    ADS  Google Scholar 

  125. [125]

    J. Conley, H. Dreiner and P. Wienemann, Measuring a light neutralino mass at the ILC: testing the MSSM neutralino cold dark matter model, Phys. Rev. D 83 (2011) 055018 [arXiv:1012.1035] [INSPIRE].

    ADS  Google Scholar 

  126. [126]

    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].

    ADS  Google Scholar 

  127. [127]

    B. Allanach, A. Djouadi, J. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].

    ADS  Google Scholar 

  128. [128]

    S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the MSSM Higgs sector at O(αbαs), Eur. Phys. J. C 39 (2005) 465 [hep-ph/0411114] [INSPIRE].

    ADS  Google Scholar 

  129. [129]

    K. Williams, private communication.

  130. [130]

    J.R. Ellis, S. Heinemeyer, K. Olive, A. Weber and G. Weiglein, The supersymmetric parameter space in light of B physics observables and electroweak precision data, JHEP 08 (2007) 083 [arXiv:0706.0652] [INSPIRE].

    ADS  Google Scholar 

  131. [131]

    ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7,{ }TeV \) proton-proton collisions, ATLAS-CONF-2011-086, CERN, Geneva Switzerland (2011).

    Google Scholar 

  132. [132]

    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    ADS  Google Scholar 

  133. [133]

    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].

  134. [134]

    B. Gosdzik and B. Sarrazin, private communication.

  135. [135]

    W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].

    ADS  Google Scholar 

  136. [136]

    W. Beenakker, M. Krämer, T. Plehn, M. Spira and P. Zerwas, Stop production at hadron colliders, Nucl. Phys. B 515 (1998) 3 [hep-ph/9710451] [INSPIRE].

    ADS  Google Scholar 

  137. [137]

    A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett. 102 (2009) 111802 [arXiv:0807.2405] [INSPIRE].

    ADS  Google Scholar 

  138. [138]

    A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004 [arXiv:0905.4749] [INSPIRE].

    ADS  Google Scholar 

  139. [139]

    W. Beenakker et al., Soft-gluon resummation for squark and gluino hadroproduction, JHEP 12 (2009) 041 [arXiv:0909.4418] [INSPIRE].

    ADS  Google Scholar 

  140. [140]

    W. Beenakker et al., Supersymmetric top and bottom squark production at hadron colliders, JHEP 08 (2010) 098 [arXiv:1006.4771] [INSPIRE].

    ADS  Google Scholar 

  141. [141]

    W. Beenakker et al., Squark and gluino hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637 [arXiv:1105.1110] [INSPIRE].

    ADS  Google Scholar 

  142. [142]

    W. Beenakker et al., The production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [INSPIRE].

    ADS  Google Scholar 

  143. [143]

    CDF collaboration, T. Aaltonen et al., Search for B s μ + μ and B d μ + μ decays with CDF II, Phys. Rev. Lett. 107 (2011) 191801 [Addendum ibid. 107 (2011) 239903] [arXiv:1107.2304] [INSPIRE].

    ADS  Google Scholar 

  144. [144]

    J. Serrano, Search for the rare decays B s,d → μμ at LHCb, arXiv:1111.2620 [INSPIRE].

  145. [145]

    M.S. Carena, D. Garcia, U. Nierste and C.E. Wagner, Effective Lagrangian for the tbH + interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].

    ADS  Google Scholar 

  146. [146]

    A. Dedes and A. Pilaftsis, Resummed effective Lagrangian for Higgs mediated FCNC interactions in the CP-violating MSSM, Phys. Rev. D 67 (2003) 015012 [hep-ph/0209306] [INSPIRE].

    ADS  Google Scholar 

  147. [147]

    R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].

    ADS  Google Scholar 

  148. [148]

    ILC collaboration, G. Aarons et al., International Linear Collider reference design report volume 2: physics at the ILC, arXiv:0709.1893 [INSPIRE].

  149. [149]

    E.A. Baltz and P. Gondolo, Markov chain Monte Carlo exploration of minimal supergravity with implications for dark matter, JHEP 10 (2004) 052 [hep-ph/0407039] [INSPIRE].

    ADS  Google Scholar 

  150. [150]

    A. Abdo et al., Observations of milky way dwarf spheroidal galaxies with the Fermi-LAT detector and constraints on dark matter models, Astrophys. J. 712 (2010) 147 [arXiv:1001.4531] [INSPIRE].

    ADS  Google Scholar 

  151. [151]

    Fermi-LAT collaboration, M. Ackermann et al., Constraining dark matter models from a combined analysis of milky way satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107 (2011) 241302 [arXiv:1108.3546] [INSPIRE].

    ADS  Google Scholar 

  152. [152]

    L. Bergström, T. Bringmann and J. Edsjö, Complementarity of direct dark matter detection and indirect detection through gamma-rays, Phys. Rev. D 83 (2011) 045024 [arXiv:1011.4514] [INSPIRE].

    ADS  Google Scholar 

  153. [153]

    T. Bringmann, L. Bergström and J. Edsjö, New gamma-ray contributions to supersymmetric dark matter annihilation, JHEP 01 (2008) 049 [arXiv:0710.3169] [INSPIRE].

    ADS  Google Scholar 

  154. [154]

    P. Scott et al., Direct constraints on minimal supersymmetry from Fermi-LAT observations of the dwarf galaxy segue 1, JCAP 01 (2010) 031 [arXiv:0909.3300] [INSPIRE].

    ADS  Google Scholar 

  155. [155]

    T. Bringmann, X. Huang, A. Ibarra, S. Vogl and C. Weniger, Fermi-LAT search for internal bremsstrahlung signatures from dark matter annihilation, arXiv:1203.1312 [INSPIRE].

  156. [156]

    H. Baer, T. Krupovnickas, S. Profumo and P. Ullio, Model independent approach to focus point supersymmetry: from dark matter to collider searches, JHEP 10 (2005) 020 [hep-ph/0507282] [INSPIRE].

    ADS  Google Scholar 

  157. [157]

    E. Gildener, Gauge symmetry hierarchies, Phys. Rev. D 14 (1976) 1667 [INSPIRE].

    ADS  Google Scholar 

  158. [158]

    M. Veltman, The infrared-ultraviolet connection, Acta Phys. Polon. B 12 (1981) 437 [INSPIRE].

    Google Scholar 

  159. [159]

    P.H. Chankowski, J.R. Ellis and S. Pokorski, The fine tuning price of LEP, Phys. Lett. B 423 (1998) 327 [hep-ph/9712234] [INSPIRE].

    ADS  Google Scholar 

  160. [160]

    R. Barbieri and A. Strumia, About the fine tuning price of LEP, Phys. Lett. B 433 (1998) 63 [hep-ph/9801353] [INSPIRE].

    ADS  Google Scholar 

  161. [161]

    P.H. Chankowski, J.R. Ellis, M. Olechowski and S. Pokorski, Haggling over the fine tuning price of LEP, Nucl. Phys. B 544 (1999) 39 [hep-ph/9808275] [INSPIRE].

    ADS  Google Scholar 

  162. [162]

    P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].

    ADS  Google Scholar 

  163. [163]

    G. Giudice and R. Rattazzi, Living dangerously with low-energy supersymmetry, Nucl. Phys. B 757 (2006) 19 [hep-ph/0606105] [INSPIRE].

    ADS  Google Scholar 

  164. [164]

    S. Cassel, D. Ghilencea and G. Ross, Fine tuning as an indication of physics beyond the MSSM, Nucl. Phys. B 825 (2010) 203 [arXiv:0903.1115] [INSPIRE].

    ADS  Google Scholar 

  165. [165]

    S. Cassel, D. Ghilencea, S. Kraml, A. Lessa and G. Ross, Fine-tuning implications for complementary dark matter and LHC SUSY searches, JHEP 05 (2011) 120 [arXiv:1101.4664] [INSPIRE].

    ADS  Google Scholar 

  166. [166]

    A. Strumia, Implications of first LHC results, arXiv:1107.1259 [INSPIRE].

  167. [167]

    G.G. Ross and K. Schmidt-Hoberg, The fine-tuning of the generalised NMSSM, Nucl. Phys. B 862 (2012) 710 [arXiv:1108.1284] [INSPIRE].

    ADS  Google Scholar 

  168. [168]

    J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project, Eur. Phys. J. C 46 (2006) 43 [hep-ph/0511344] [INSPIRE].

    ADS  Google Scholar 

  169. [169]

    H. Baer, J. Ferrandis, S. Kraml and W. Porod, On the treatment of threshold effects in SUSY spectrum computations, Phys. Rev. D 73 (2006) 015010 [hep-ph/0511123] [INSPIRE].

    ADS  Google Scholar 

  170. [170]

    A.D. Box and X. Tata, Threshold and flavor effects in the renormalization group equations of the MSSM: dimensionless couplings, Phys. Rev. D 77 (2008) 055007 [Erratum ibid. D 82 (2010)119904] [arXiv:0712.2858] [INSPIRE].

    ADS  Google Scholar 

  171. [171]

    A.D. Box and X. Tata, Threshold and flavour effects in the renormalization group equations of the MSSM II: dimensionful couplings, Phys. Rev. D 79 (2009) 035004 [Erratum ibid. D 82 (2010)119905] [arXiv:0810.5765] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philip Bechtle.

Additional information

ArXiv ePrint: 1204.4199

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Bechtle, P., Bringmann, T., Desch, K. et al. Constrained supersymmetry after two years of LHC data: a global view with Fittino. J. High Energ. Phys. 2012, 98 (2012). https://doi.org/10.1007/JHEP06(2012)098

Download citation

Keywords

  • Supersymmetry Phenomenology