QCD parton showers and NLO EW corrections to Drell-Yan

  • Peter Richardson
  • Renat R. Sadykov
  • Andrey A. Sapronov
  • Michael H. Seymour
  • Peter Z. Skands
Open Access


We report on the implementation of an interface between the SANC generator framework for Drell-Yan hard processes, which includes next-to-leading order electroweak (NLO EW) corrections, and the Herwig++ and Pythia8 QCD parton shower Monte Carlos. A special aspect of this implementation is that the initial-state shower evolution in both shower generators has been augmented to handle the case of an incoming photon-in-a- proton, diagrams for which appear at the NLO EW level. The difference between shower algorithms leads to residual differences in the relative corrections of 2-3 % in the p T (μ) distributions at p T (μ) ≳ 50 GeV (where the NLO EW correction itself is of order 10 %).


QCD NLO Computations Standard Model Hadronic Colliders 


  1. [1]
    A. Andonov et al., SANCscopev.1.00, Comput. Phys. Commun. 174 (2006) 481 [Erratum ibid. 177 (2007) 623-624] [hep-ph/0411186] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Andonov et al., Standard SANC modules, Comput. Phys. Commun. 181 (2010) 305 [arXiv:0812.4207] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Bahr et al., HERWIG++ 2.3 release note, arXiv:0812.0529 [INSPIRE].
  5. [5]
    T. Sjostrand and et al., Pythia 8 online PHP installation,˜torbjorn/php8135/Welcome.php.
  6. [6]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Balossini et al., Electroweak & QCD corrections to Drell-Yan processes, Acta Phys. Polon. B 39 (2008) 1675 [arXiv:0805.1129] [INSPIRE].ADSGoogle Scholar
  8. [8]
    G. Balossini et al., Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC, JHEP 01 (2010) 013 [arXiv:0907.0276] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C. Carloni Calame, G. Montagna, O. Nicrosini and M. Treccani, Higher order QED corrections to W boson mass determination at hadron colliders, Phys. Rev. D 69 (2004) 037301 [hep-ph/0303102] [INSPIRE].ADSGoogle Scholar
  10. [10]
    C. Carloni Calame et al., HORACE web page,˜hepcomplex/horace.html..
  11. [11]
    G. Corcella et al., HERWIG 6.5: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Arbuzov et al., One-loop corrections to the Drell-Yan process in SANC. I. The charged current case, Eur. Phys. J. C 46 (2006) 407 [Erratum ibid. C 50 (2007) 505] [hep-ph/0506110] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Arbuzov et al., One-loop corrections to the Drell-Yan process in SANC. II. The neutral current case, Eur. Phys. J. C 54 (2008) 451 [arXiv:0711.0625] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D.Y. Bardin and G. Passarino, The standard model in the making: precision study of the electroweak interactions, Clarendon Press, Oxford U.K. (1999).Google Scholar
  15. [15]
    M. Greco, G. Pancheri-Srivastava and Y. Srivastava, Radiative corrections to e + e  → μ + μ around the Z0, Nucl. Phys. B 171 (1980) 118 [Erratum ibid. B 197 (1982) 543] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Böhm and W. Hollik, Radiative corrections to polarized e e + annihilation in the standard electroweak model, Nucl. Phys. B 204 (1982) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D. Wackeroth and W. Hollik, Electroweak radiative corrections to resonant charged gauge boson production, Phys. Rev. D 55 (1997) 6788 [hep-ph/9606398] [INSPIRE].ADSGoogle Scholar
  19. [19]
    K.-P. Diener, S. Dittmaier and W. Hollik, Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering, Phys. Rev. D 72 (2005) 093002 [hep-ph/0509084] [INSPIRE].ADSGoogle Scholar
  20. [20]
    G. Degrassi, P. Gambino and A. Sirlin, Precise calculation of M W , sin2 θ W (M Z) and sin2 θ eff (lept), Phys. Lett. B 394 (1997) 188 [hep-ph/9611363] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Sirlin, Radiative corrections in the SU(2)L × U(1) theory: a simple renormalization framework, Phys. Rev. D 22 (1980) 971 [INSPIRE].ADSGoogle Scholar
  22. [22]
    J. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  23. [23]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Arbuzov and R. Sadykov, Inverse bremsstrahlung contributions to Drell-Yan like processes, J. Exp. Theor. Phys. 106 (2008) 488 [arXiv:0707.0423] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    C. Buttar et al., Les Houches physics at TeV colliders 2005, standard model and Higgs working group: summary report, hep-ph/0604120 [INSPIRE].
  26. [26]
    S. Dittmaier and M. Huber, Radiative corrections to the neutral-current Drell-Yan process in the Standard Model and its minimal supersymmetric extension, JHEP 01 (2010) 060 [arXiv:0911.2329] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Fleischer, O. Tarasov and F. Jegerlehner, Two loop heavy top corrections to the rho parameter: a simple formula valid for arbitrary Higgs mass, Phys. Lett. B 319 (1993) 249 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    E. Boos et al., Generic user process interface for event generators, hep-ph/0109068 [INSPIRE].
  30. [30]
    J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Martin, R. Roberts, W. Stirling and R. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    P. Lenzi and J. Butterworth, A study on matrix element corrections in inclusive Z/γ * production at LHC as implemented in PYTHIA, HERWIG, ALPGEN and SHERPA, arXiv:0903.3918 [INSPIRE].
  33. [33]
    A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C. Bernaciak and D. Wackeroth, Combining NLO QCD and electroweak radiative corrections to W boson production at hadron colliders in the POWHEG framework, arXiv:1201.4804 [INSPIRE].
  35. [35]
    L. Barze, G. Montagna, P. Nason, O. Nicrosini and F. Piccinini, Implementation of electroweak corrections in the POWHEG BOX: single W production, JHEP 04 (2012) 037 [arXiv:1202.0465] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • Peter Richardson
    • 1
  • Renat R. Sadykov
    • 2
  • Andrey A. Sapronov
    • 2
  • Michael H. Seymour
    • 3
  • Peter Z. Skands
    • 4
  1. 1.Institute for Particle Physics PhenomenologyUniversity of DurhamDurhamU.K.
  2. 2.Joint Institute for Nuclear ResearchDubnaRussia
  3. 3.School of Physics and AstronomyThe University of ManchesterManchesterU.K.
  4. 4.Theoretical Physics, CERNGeneva 23Switzerland

Personalised recommendations