A double coset ansatz for integrability in AdS/CFT

Article

Abstract

We give a proof that the expected counting of strings attached to giant graviton branes in AdS5 × S5, as constrained by the Gauss Law, matches the dimension spanned by the expected dual operators in the gauge theory. The counting of string-brane configurations is formulated as a graph counting problem, which can be expressed as the number of points on a double coset involving permutation groups. Fourier transformation on the double coset suggests an ansatz for the diagonalization of the one-loop dilatation operator in this sector of strings attached to giant graviton branes. The ansatz agrees with and extends recent results which have found the dynamics of open string excitations of giants to be given by harmonic oscillators. We prove that it provides the conjectured diagonalization leading to harmonic oscillators.

Keywords

D-branes AdS-CFT Correspondence 1/N Expansion 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  2. [2]
    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N =4 SYM theory,Adv. Theor. Math. Phys. 5(2002) 809 [hep-th/0111222][INSPIRE].MathSciNetGoogle Scholar
  4. [4]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and goliath, JHEP 08 (2000) 040 [hep-th/0008015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    V. Balasubramanian, M.-X. Huang, T.S. Levi and A. Naqvi, Open strings from N = 4 super Yang-Mills, JHEP 08 (2002) 037 [hep-th/0204196] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    O. Aharony, Y.E. Antebi, M. Berkooz and R. Fishman, ’Holey sheets: Pfaffians and subdeterminants as D-brane operators in large-N gauge theories, JHEP 12 (2002) 069 [hep-th/0211152] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    D. Berenstein, Shape and holography: Studies of dual operators to giant gravitons, Nucl. Phys. B 675 (2003) 179 [hep-th/0306090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    D. Sadri and M. Sheikh-Jabbari, Giant hedgehogs: Spikes on giant gravitons, Nucl. Phys. B 687 (2004) 161 [hep-th/0312155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    D. Berenstein, D.H. Correa and S.E. Vazquez, Quantizing open spin chains with variable length: An Example from giant gravitons, Phys. Rev. Lett. 95 (2005) 191601 [hep-th/0502172] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    D. Berenstein, D.H. Correa and S.E. Vazquez, A study of open strings ending on giant gravitons, spin chains and integrability, JHEP 09 (2006) 065 [hep-th/0604123] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    V. Balasubramanian, D. Berenstein, B. Feng and M.-X. Huang, D-branes in Yang-Mills theory and emergent gauge symmetry, JHEP 03 (2005) 006 [hep-th/0411205] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant gravitonswith strings attached (I), JHEP 06 (2007) 074 [hep-th/0701066] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant gravitonswith strings attached (II), JHEP 09 (2007) 049 [hep-th/0701067] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    D. Bekker, R. de Mello Koch and M. Stephanou, Giant gravitonswith strings attached. III., JHEP 02 (2008) 029 [arXiv:0710.5372] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. de Mello Koch, B.A.E. Mohammed and S. Smith, Nonplanar integrability: beyond the SU(2) sector, arXiv:1106.2483 [INSPIRE].
  18. [18]
    R. de Mello Koch, G. Mashile and N. Park, Emergent Threebrane Lattices, Phys. Rev. D 81 (2010) 106009 [arXiv:1004.1108] [INSPIRE].ADSGoogle Scholar
  19. [19]
    R. de Mello Koch, G. Kemp and S. Smith, From large-N nonplanar anomalous dimensions to open spring theory, Phys. Lett. B 711 (2012) 398 [arXiv:1111.1058] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    V. De Comarmond, R. de Mello Koch and K. Jefferies, Surprisingly simple spectra, JHEP 02 (2011) 006 [arXiv:1012.3884] [INSPIRE].Google Scholar
  21. [21]
    W. Carlson, R. de Mello Koch and H. Lin, Nonplanar integrability, JHEP 03 (2011) 105 [arXiv:1101.5404] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. de Mello Koch, M. Dessein, D. Giataganas and C. Mathwin, Giant graviton oscillators, JHEP 10 (2011) 009 [arXiv:1108.2761] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    J. Minahan and K. Zarembo, The Bethe ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of conformal N = 4 super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    R. Giles and C.B. Thorn, A lattice approach to string theory, Phys. Rev. D 16 (1977) 366 [INSPIRE].ADSGoogle Scholar
  27. [27]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N =4 super Yang-Mills,JHEP 04 (2002) 013 [hep-th/0202021][INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    D. Vaman and H.L. Verlinde, Bit strings from N = 4 gauge theory, JHEP 11 (2003) 041 [hep-th/0209215] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    R. de Mello Koch, N. Ives and M. Stephanou, On subgroup adapted bases for representations of the symmetric group, J. Phys. A 45 (2012) 135204 [arXiv:1112.4316] [INSPIRE].ADSGoogle Scholar
  30. [30]
    T.W. Brown, P. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    T.W. Brown, P. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    J. Pasukonis and S. Ramgoolam, From counting to construction of BPS states in N = 4 SYM, JHEP 02 (2011) 078 [arXiv:1010.1683] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    R. de Mello Koch and S. Ramgoolam, Strings from Feynman Graph counting : without large-N, Phys. Rev. D 85 (2012) 026007 [arXiv:1110.4858] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S. Cordes, G.W. Moore and S. Ramgoolam, Lectures on 2 − D Yang-Mills theory, equivariant cohomology and topological field theories, Nucl. Phys. Proc. Suppl. 41 (1995) 184 [hep-th/9411210] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  35. [35]
    S. Ramgoolam, Schur-Weyl duality as an instrument of Gauge-String duality, AIP Conf. Proc. 1031 (2008) 255 [arXiv:0804.2764] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Y. Kimura and S. Ramgoolam, Enhanced symmetries of gauge theory and resolving the spectrum of local operators, Phys. Rev. D 78 (2008) 126003 [arXiv:0807.3696] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    W. Fulton and J. Harris, Theory of Group Representations and Applications, Springer Verlag, Heidelberg Germany (1991).Google Scholar
  38. [38]
    R.C. Read, The enumeration of locally restricted graphs (I), J. London Math. Soc. 34 (1959) 417.MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    F. Dolan, Counting BPS operators in N = 4 SYM, Nucl. Phys. B 790 (2008) 432 [arXiv:0704.1038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    S. Dutta and R. Gopakumar, Free fermions and thermal AdS/CFT, JHEP 03 (2008) 011 [arXiv:0711.0133] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    J. Pasukonis and S. Ramgoolam, Quantum states to brane geometries via fuzzy moduli spaces of giant gravitons, JHEP 04 (2012) 077 [arXiv:1201.5588] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    R. de Mello Koch, P. Diaz and H. Soltanpanahi, Non-planar Anomalous Dimensions in the sl(2) Sector, arXiv:1111.6385 [INSPIRE].
  43. [43]
    N. Beisert and M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys. B 670 (2003) 439 [hep-th/0307042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact multi-matrix correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Kerber, R. Laue and T. Wieland, DIMACS: series in discrete mathematics and theoretical computer science. Vol. 51: Discrete Mathematics for combinatorial chemistry, AMS Publishing, Providence U.S.A. (2000).Google Scholar
  46. [46]
    M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 [math/9908171].
  47. [47]
    E. Witten, Fivebranes and knots, arXiv:1101.3216 [INSPIRE].
  48. [48]
    I. Frenkel, M. Khovanov and C. Stroppel, A categorification of finite-dimensional irreducible representations of quantum sl(2) and their tensor products, Selecta Math. (N.S.) 12 (2006) 379431 [math/0511467].
  49. [49]

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.National Institute for Theoretical Physics, Department of Physics and Centre for Theoretical PhysicsUniversity of WitwatersrandWitsSouth Africa
  2. 2.Centre for Research in String Theory, Department of PhysicsQueen Mary University of LondonLondonU.K

Personalised recommendations