4D, \( \mathcal{N} \) = 1 supersymmetry genomics (II)

  • S. James GatesJr
  • Jared Hallett
  • James Parker
  • Vincent G. J. Rodgers
  • Kory Stiffler
Article

Abstract

We continue the development of a theory of off-shell supersymmetric representations analogous to that of compact Lie algebras such as SU(3). For off-shell 4D, \( \mathcal{N} \) = 1 systems, quark-like representations have been identified [1] in terms of cis-Adinkras and trans-Adinkras and it has been conjectured that arbitrary representations are composites of nc-cis and nt-trans representations. Analyzing the real scalar and complex linear super-field multiplets, these “chemical enantiomer” numbers are found to be nc = nt = 1 and nc = 1, nt = 2, respectively.

Keywords

Extended Supersymmetry Superspaces 

References

  1. [1]
    S.J. Gates Jr. et al., 4D, N = 1 Supersymmetry Genomics (I), JHEP 12 (2009) 008 [arXiv:0902.3830] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory. Vol. 2, Cambridge University Press, Cambridge U.K. (1987).Google Scholar
  3. [3]
    J. Polchinski, String Theory. Vol. II: Superstring Theory and Beyond, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  4. [4]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  5. [5]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    W. Siegel and M. Roček, On off-shell supermultiplets, Phys. Lett. B 105 (1981) 275 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S.J. Gates Jr. et al., A detailed Investigation of First and Second Order Supersymmetries for Off-Shell N = 2 and N = 4 Supermultiplets, arXiv:1106.5475 [INSPIRE].
  8. [8]
    S.J. Gates Jr. and L. Rana, A theory of spinning particles for large-N extended supersymmetry. 2., Phys. Lett. B 369 (1996) 262 [hep-th/9510151] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    E. Bergshoeff, M. de Roo and B. de Wit, Extended conformal supergravity, Nucl. Phys. B 182 (1981) 173 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Faux and S.J. Gates Jr., Adinkras: A graphical technology for supersymmetric representation theory, Phys. Rev. D 71 (2005) 065002 [hep-th/0408004] [INSPIRE].ADSGoogle Scholar
  11. [11]
    Y.X. Zhang, Adinkras for mathematicians, arXiv:1111.6055 [INSPIRE].
  12. [12]
    M. Faux, K. Iga and G. Landweber, Dimensional enhancement via supersymmetry, Adv. Math. Phys. 2011 (2011) 259089 [arXiv:0907.3605] [INSPIRE].MathSciNetGoogle Scholar
  13. [13]
    M.G. Faux and G.D. Landweber, Spin holography via dimensional enhancement, Phys. Lett. B 681 (2009) 161 [arXiv:0907.4543] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    C. Doran et al., Adinkras and the Dynamics of Superspace Prepotentials, hep-th/0605269 [INSPIRE].
  15. [15]
    C. Doran et al., Relating Doubly-Even Error-Correcting Codes, Graphs and Irreducible Representations of N-Extended Supersymmetry, arXiv:0806.0051 [INSPIRE].
  16. [16]
    S.J. Gates Jr. and T. Hubsch, On Dimensional Extension of Supersymmetry: From Worldlines to Worldsheets, arXiv:1104.0722 [INSPIRE].
  17. [17]
    H. Georgi, Lie Algebras in Particle Physics, second edition, Perseus Books, New York U.S.A. (1999).Google Scholar
  18. [18]
    J.R. Silvester, Determinants of Block Matrices, Math. Gaz. 84 (2000) 460.CrossRefGoogle Scholar
  19. [19]
    D.Z. Freedman, Gauge Theories of Antisymmetric Tensor Fields, Caltech. preprint calt-68-624 (1977), unpublished.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • S. James GatesJr
    • 1
  • Jared Hallett
    • 2
  • James Parker
    • 1
  • Vincent G. J. Rodgers
    • 3
  • Kory Stiffler
    • 1
  1. 1.Center for String and Particle Theory, Department of PhysicsUniversity of MarylandCollege ParkU.S.A
  2. 2.Department of MathematicsWilliams CollegeWilliamstownU.S.A
  3. 3.Department of Physics and AstronomyUniversity of IowaIowa CityU.S.A

Personalised recommendations